YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Brazing and Wide Gap Repair of X-40 Using Ni-Base Alloys

    Source: Journal of Engineering for Gas Turbines and Power:;2008:;volume( 130 ):;issue: 003::page 32101
    Author:
    Stephen Schoonbaert
    ,
    Scott Yandt
    ,
    Peter Au
    ,
    Xiao Huang
    DOI: 10.1115/1.2836743
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Co-base superalloys are commonly used for vanes and parts of the combustion chamber in gas turbine engines. The Co-base superalloys are primarily solid solution strengthened and have good resistance to hot corrosion, creep, and thermal fatigue. In particular, Co-base alloy X-40 was used to fabricate the first stage NGV airfoils of T56 series engines; inspections after service have revealed that X-40 airfoils suffered from severe thermal fatigue damages. In this study, a new braze repair scheme is proposed; in which Ni-base alloys are used to repair the X-40 substrate in both narrow and wide gap configurations. Metallographic examination, X-ray mapping, and energy dispersive spectroscopy semiquantitative compositional analyses were carried out to study the microstructures in the braze joint in the as-brazed condition and after thermal exposure at 950°C. The results obtained so far suggest the formation of Cr-rich borides, eutectic phases, and various carbides in the joint. No TCP phases were found in the brazed joint and base metals adjacent to the joint. The high carbon content in the alloy X-40 may have played an important role in preventing the formation of TCP phases during brazing and subsequent thermal exposure.
    keyword(s): Alloys , Maintenance , Brazing , Carbon , Particulate matter AND Superalloys ,
    • Download: (2.304Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Brazing and Wide Gap Repair of X-40 Using Ni-Base Alloys

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/137934
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorStephen Schoonbaert
    contributor authorScott Yandt
    contributor authorPeter Au
    contributor authorXiao Huang
    date accessioned2017-05-09T00:27:54Z
    date available2017-05-09T00:27:54Z
    date copyrightMay, 2008
    date issued2008
    identifier issn1528-8919
    identifier otherJETPEZ-27012#032101_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/137934
    description abstractCo-base superalloys are commonly used for vanes and parts of the combustion chamber in gas turbine engines. The Co-base superalloys are primarily solid solution strengthened and have good resistance to hot corrosion, creep, and thermal fatigue. In particular, Co-base alloy X-40 was used to fabricate the first stage NGV airfoils of T56 series engines; inspections after service have revealed that X-40 airfoils suffered from severe thermal fatigue damages. In this study, a new braze repair scheme is proposed; in which Ni-base alloys are used to repair the X-40 substrate in both narrow and wide gap configurations. Metallographic examination, X-ray mapping, and energy dispersive spectroscopy semiquantitative compositional analyses were carried out to study the microstructures in the braze joint in the as-brazed condition and after thermal exposure at 950°C. The results obtained so far suggest the formation of Cr-rich borides, eutectic phases, and various carbides in the joint. No TCP phases were found in the brazed joint and base metals adjacent to the joint. The high carbon content in the alloy X-40 may have played an important role in preventing the formation of TCP phases during brazing and subsequent thermal exposure.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleBrazing and Wide Gap Repair of X-40 Using Ni-Base Alloys
    typeJournal Paper
    journal volume130
    journal issue3
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.2836743
    journal fristpage32101
    identifier eissn0742-4795
    keywordsAlloys
    keywordsMaintenance
    keywordsBrazing
    keywordsCarbon
    keywordsParticulate matter AND Superalloys
    treeJournal of Engineering for Gas Turbines and Power:;2008:;volume( 130 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian