YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analysis and Interpretation of Stress Fiber Organization in Cells Subject to Cyclic Stretch

    Source: Journal of Biomechanical Engineering:;2008:;volume( 130 ):;issue: 003::page 31009
    Author:
    Zhensong Wei
    ,
    Vikram S. Deshpande
    ,
    Robert M. McMeeking
    ,
    Anthony G. Evans
    DOI: 10.1115/1.2907745
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Numerical simulations that incorporate a biochemomechanical model for the contractility of the cytoskeleton have been used to rationalize the following observations. Uniaxial cyclic stretching of cells causes stress fibers to align perpendicular to the stretch direction, with degree of alignment dependent on the stretch strain magnitude, as well as the frequency and the transverse contraction of the substrate. Conversely, equibiaxial cyclic stretching induces a uniform distribution of stress fiber orientations. Demonstrations that the model successfully predicts the alignments experimentally found are followed by a parameter study to investigate the influence of a range of key variables including the stretch magnitude, the intrinsic rate sensitivity of the stress fibers, the straining frequency, and the transverse contraction of the substrate. The primary predictions are as follows. The rate sensitivity has a strong influence on alignment, equivalent to that attained by a few percent of additional stretch. The fiber alignment increases with increasing cycling frequency. Transverse contraction of the substrate causes the stress fibers to organize into two symmetrical orientations with respect to the primary stretch direction.
    keyword(s): Fibers AND Stress ,
    • Download: (343.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analysis and Interpretation of Stress Fiber Organization in Cells Subject to Cyclic Stretch

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/137460
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorZhensong Wei
    contributor authorVikram S. Deshpande
    contributor authorRobert M. McMeeking
    contributor authorAnthony G. Evans
    date accessioned2017-05-09T00:27:00Z
    date available2017-05-09T00:27:00Z
    date copyrightJune, 2008
    date issued2008
    identifier issn0148-0731
    identifier otherJBENDY-26808#031009_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/137460
    description abstractNumerical simulations that incorporate a biochemomechanical model for the contractility of the cytoskeleton have been used to rationalize the following observations. Uniaxial cyclic stretching of cells causes stress fibers to align perpendicular to the stretch direction, with degree of alignment dependent on the stretch strain magnitude, as well as the frequency and the transverse contraction of the substrate. Conversely, equibiaxial cyclic stretching induces a uniform distribution of stress fiber orientations. Demonstrations that the model successfully predicts the alignments experimentally found are followed by a parameter study to investigate the influence of a range of key variables including the stretch magnitude, the intrinsic rate sensitivity of the stress fibers, the straining frequency, and the transverse contraction of the substrate. The primary predictions are as follows. The rate sensitivity has a strong influence on alignment, equivalent to that attained by a few percent of additional stretch. The fiber alignment increases with increasing cycling frequency. Transverse contraction of the substrate causes the stress fibers to organize into two symmetrical orientations with respect to the primary stretch direction.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAnalysis and Interpretation of Stress Fiber Organization in Cells Subject to Cyclic Stretch
    typeJournal Paper
    journal volume130
    journal issue3
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.2907745
    journal fristpage31009
    identifier eissn1528-8951
    keywordsFibers AND Stress
    treeJournal of Biomechanical Engineering:;2008:;volume( 130 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian