YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Elastic Boundary Layers in Two-Dimensional Isotropic Lattices

    Source: Journal of Applied Mechanics:;2008:;volume( 075 ):;issue: 002::page 21020
    Author:
    A. Srikantha Phani
    ,
    Norman A. Fleck
    DOI: 10.1115/1.2775503
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The phenomenon of elastic boundary layers under quasistatic loading is investigated using the Floquet–Bloch formalism for two-dimensional, isotropic, periodic lattices. The elastic boundary layer is a region of localized elastic deformation, confined to the free edge of a lattice. Boundary layer phenomena in three isotropic lattice topologies are investigated: the semiregular Kagome lattice, the regular hexagonal lattice, and the regular fully triangulated lattice. The boundary layer depth is on the order of the strut length for the hexagonal and the fully triangulated lattices. For the Kagome lattice, the depth of boundary layer scales inversely with the relative density. Thus, the boundary layer in a Kagome lattice of low relative density spans many cells.
    keyword(s): Boundary layers , Eigenvalues , Density AND Waves ,
    • Download: (1.305Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Elastic Boundary Layers in Two-Dimensional Isotropic Lattices

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/137339
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorA. Srikantha Phani
    contributor authorNorman A. Fleck
    date accessioned2017-05-09T00:26:45Z
    date available2017-05-09T00:26:45Z
    date copyrightMarch, 2008
    date issued2008
    identifier issn0021-8936
    identifier otherJAMCAV-26682#021020_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/137339
    description abstractThe phenomenon of elastic boundary layers under quasistatic loading is investigated using the Floquet–Bloch formalism for two-dimensional, isotropic, periodic lattices. The elastic boundary layer is a region of localized elastic deformation, confined to the free edge of a lattice. Boundary layer phenomena in three isotropic lattice topologies are investigated: the semiregular Kagome lattice, the regular hexagonal lattice, and the regular fully triangulated lattice. The boundary layer depth is on the order of the strut length for the hexagonal and the fully triangulated lattices. For the Kagome lattice, the depth of boundary layer scales inversely with the relative density. Thus, the boundary layer in a Kagome lattice of low relative density spans many cells.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleElastic Boundary Layers in Two-Dimensional Isotropic Lattices
    typeJournal Paper
    journal volume75
    journal issue2
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.2775503
    journal fristpage21020
    identifier eissn1528-9036
    keywordsBoundary layers
    keywordsEigenvalues
    keywordsDensity AND Waves
    treeJournal of Applied Mechanics:;2008:;volume( 075 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian