YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Locally Exact Homogenization Theory for Periodic Microstructures With Isotropic Phases

    Source: Journal of Applied Mechanics:;2008:;volume( 075 ):;issue: 005::page 51010
    Author:
    Anthony S. Drago
    ,
    Marek-Jerzy Pindera
    DOI: 10.1115/1.2913043
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Elements of the homogenization theory are utilized to develop a new micromechanics approach for unit cells of periodic heterogeneous materials based on locally exact elasticity solutions. The interior inclusion problem is exactly solved by using Fourier series representation of the local displacement field. The exterior unit cell periodic boundary-value problem is tackled by using a new variational principle for this class of nonseparable elasticity problems, which leads to exceptionally fast and well-behaved convergence of the Fourier series coefficients. Closed-form expressions for the homogenized moduli of unidirectionally reinforced heterogeneous materials are obtained in terms of Hill’s strain concentration matrices valid under arbitrary combined loading, which yield homogenized Hooke’s law. Homogenized engineering moduli and local displacement and stress fields of unit cells with offset fibers, which require the use of periodic boundary conditions, are compared to corresponding finite-element results demonstrating excellent correlation.
    keyword(s): Fibers , Stress , Finite element analysis , Boundary-value problems , Displacement , Equations , Variational principles , Shear (Mechanics) , Elasticity AND Hooke's law ,
    • Download: (1.186Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Locally Exact Homogenization Theory for Periodic Microstructures With Isotropic Phases

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/137233
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorAnthony S. Drago
    contributor authorMarek-Jerzy Pindera
    date accessioned2017-05-09T00:26:35Z
    date available2017-05-09T00:26:35Z
    date copyrightSeptember, 2008
    date issued2008
    identifier issn0021-8936
    identifier otherJAMCAV-26718#051010_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/137233
    description abstractElements of the homogenization theory are utilized to develop a new micromechanics approach for unit cells of periodic heterogeneous materials based on locally exact elasticity solutions. The interior inclusion problem is exactly solved by using Fourier series representation of the local displacement field. The exterior unit cell periodic boundary-value problem is tackled by using a new variational principle for this class of nonseparable elasticity problems, which leads to exceptionally fast and well-behaved convergence of the Fourier series coefficients. Closed-form expressions for the homogenized moduli of unidirectionally reinforced heterogeneous materials are obtained in terms of Hill’s strain concentration matrices valid under arbitrary combined loading, which yield homogenized Hooke’s law. Homogenized engineering moduli and local displacement and stress fields of unit cells with offset fibers, which require the use of periodic boundary conditions, are compared to corresponding finite-element results demonstrating excellent correlation.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Locally Exact Homogenization Theory for Periodic Microstructures With Isotropic Phases
    typeJournal Paper
    journal volume75
    journal issue5
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.2913043
    journal fristpage51010
    identifier eissn1528-9036
    keywordsFibers
    keywordsStress
    keywordsFinite element analysis
    keywordsBoundary-value problems
    keywordsDisplacement
    keywordsEquations
    keywordsVariational principles
    keywordsShear (Mechanics)
    keywordsElasticity AND Hooke's law
    treeJournal of Applied Mechanics:;2008:;volume( 075 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian