YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Stiffness Design of Continuum Structures by a Bionics Topology Optimization Method

    Source: Journal of Applied Mechanics:;2008:;volume( 075 ):;issue: 005::page 51006
    Author:
    Kun Cai
    ,
    Jiao Shi
    ,
    Biao-song Chen
    ,
    Hong-wu Zhang
    DOI: 10.1115/1.2936929
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A heuristic approach is presented to solve continuum topology optimization problems with specified constraints, e.g., structural volume constraint and/or displacement constraint(s). The essentials of the present approach are summarized as follows. First, the structure is regarded as a piece of bone and the topology optimization process is viewed as bone remodeling process. Second, a second-rank positive and definite fabric tensor is introduced to express the microstructure and anisotropy of a material point in the design domain. The eigenpairs of the fabric tensor are the design variables of the material point. Third, Wolff’s law, which states that bone microstructure and local stiffness tend to align with the stress principal directions to adapt to its mechanical environment, is used to renew the eigenvectors of the fabric tensor. To update the eigenvalues, an interval of reference strain, which is similar to the concept of dead zone in bone remodeling theory, is suggested. The idea is that, when any one of the absolute values of the principal strains of a material point is out of the current reference interval, the fabric tensor will be changed. On the contrary, if all of the absolute values of the principal strains are in the current reference interval, the fabric tensor remains constant and the material point is in a state of remodeling equilibrium. Finally, the update rule of the reference strain interval is established. When the length of the interval equals zero, the strain energy density in the final structure distributes uniformly. Simultaneously, the volume and the displacement field of the final structure are determined uniquely. Therefore, the update of the reference interval depends on the ratio(s) between the current constraint value(s) and their critical value(s). Parameters, e.g., finite element mesh the initial material and the increments of the eigenvalues of fabric tensors, are studied to reveal their influences on the convergent behavior. Numerical results demonstrate the validity of the method developed.
    keyword(s): Textiles , Tensors , Design , Optimization , Displacement , Stiffness , Topology AND Eigenvalues ,
    • Download: (1.215Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Stiffness Design of Continuum Structures by a Bionics Topology Optimization Method

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/137229
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorKun Cai
    contributor authorJiao Shi
    contributor authorBiao-song Chen
    contributor authorHong-wu Zhang
    date accessioned2017-05-09T00:26:34Z
    date available2017-05-09T00:26:34Z
    date copyrightSeptember, 2008
    date issued2008
    identifier issn0021-8936
    identifier otherJAMCAV-26718#051006_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/137229
    description abstractA heuristic approach is presented to solve continuum topology optimization problems with specified constraints, e.g., structural volume constraint and/or displacement constraint(s). The essentials of the present approach are summarized as follows. First, the structure is regarded as a piece of bone and the topology optimization process is viewed as bone remodeling process. Second, a second-rank positive and definite fabric tensor is introduced to express the microstructure and anisotropy of a material point in the design domain. The eigenpairs of the fabric tensor are the design variables of the material point. Third, Wolff’s law, which states that bone microstructure and local stiffness tend to align with the stress principal directions to adapt to its mechanical environment, is used to renew the eigenvectors of the fabric tensor. To update the eigenvalues, an interval of reference strain, which is similar to the concept of dead zone in bone remodeling theory, is suggested. The idea is that, when any one of the absolute values of the principal strains of a material point is out of the current reference interval, the fabric tensor will be changed. On the contrary, if all of the absolute values of the principal strains are in the current reference interval, the fabric tensor remains constant and the material point is in a state of remodeling equilibrium. Finally, the update rule of the reference strain interval is established. When the length of the interval equals zero, the strain energy density in the final structure distributes uniformly. Simultaneously, the volume and the displacement field of the final structure are determined uniquely. Therefore, the update of the reference interval depends on the ratio(s) between the current constraint value(s) and their critical value(s). Parameters, e.g., finite element mesh the initial material and the increments of the eigenvalues of fabric tensors, are studied to reveal their influences on the convergent behavior. Numerical results demonstrate the validity of the method developed.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleStiffness Design of Continuum Structures by a Bionics Topology Optimization Method
    typeJournal Paper
    journal volume75
    journal issue5
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.2936929
    journal fristpage51006
    identifier eissn1528-9036
    keywordsTextiles
    keywordsTensors
    keywordsDesign
    keywordsOptimization
    keywordsDisplacement
    keywordsStiffness
    keywordsTopology AND Eigenvalues
    treeJournal of Applied Mechanics:;2008:;volume( 075 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian