contributor author | J. Wu | |
contributor author | J. Song | |
contributor author | Y. Huang | |
contributor author | K. C. Hwang | |
date accessioned | 2017-05-09T00:26:32Z | |
date available | 2017-05-09T00:26:32Z | |
date copyright | November, 2008 | |
date issued | 2008 | |
identifier issn | 0021-8936 | |
identifier other | JAMCAV-26727#061007_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/137203 | |
description abstract | Based on the finite-deformation shell theory for carbon nanotubes established from the interatomic potential in Part I of this paper, we have studied the instability of carbon nanotubes subjected to different loadings (tension, compression, internal and external pressures, and torsion). Similar to the conventional shells, carbon nanotubes may undergo bifurcation under compression/torsion/external pressure. Our analysis, however, shows that carbon nanotubes may also undergo bifurcation in tension and internal pressure, though the bifurcation modes for tension and compression are very different, and so are the modes for the internal and external pressures. The critical load for instability and bifurcation depends on the interatomic potential used. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | A Finite-Deformation Shell Theory for Carbon Nanotubes Based on the Interatomic Potential—Part II: Instability Analysis | |
type | Journal Paper | |
journal volume | 75 | |
journal issue | 6 | |
journal title | Journal of Applied Mechanics | |
identifier doi | 10.1115/1.2965367 | |
journal fristpage | 61007 | |
identifier eissn | 1528-9036 | |
keywords | Deformation | |
keywords | Bifurcation | |
keywords | Carbon nanotubes AND Tension | |
tree | Journal of Applied Mechanics:;2008:;volume( 075 ):;issue: 006 | |
contenttype | Fulltext | |