YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Bulk Flow Model for Off-Centered Honeycomb Gas Seals

    Source: Journal of Engineering for Gas Turbines and Power:;2007:;volume( 129 ):;issue: 001::page 185
    Author:
    Thomas Soulas
    ,
    Luis San Andres
    DOI: 10.1115/1.2227031
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A computational analysis for prediction of the static and dynamic forced performance of gas honeycomb seals at off-centered rotor conditions follows. The bulk-flow analysis, similar to the two-control volume flow model of and (1997, “ The Acoustic Influence of Cell Depth on the Rotordynamic Characteristics of Smooth-Rotor/Honeycomb-Stator Annular Gas Seals,” ASME J. Eng. Gas Turbines Power, 119, pp. 949–957), is brought without loss of generality into a single-control volume model, thus simplifying the computational process. The formulation accommodates the honeycomb effective cell depth, and existing software for annular pressure seals and is easily upgraded for damper seal analysis. An analytical perturbation method for derivation of zeroth- and first-order flow fields renders the seal equilibrium response and frequency-dependent dynamic force impedances, respectively. Numerical predictions for a centered straight-bore honeycomb gas seal shows good agreement with experimentally identified impedances, hence validating the model and confirming the paramount influence of excitation frequency on the rotordynamic force coefficients of honeycomb seals. The effect of rotor eccentricity on the static and dynamic forced response of a smooth annular seal and a honeycomb seal is evaluated for characteristic pressure differentials and rotor speeds. Leakage for the two seal types increases slightly as the rotor eccentricity increases. Rotor off-centering has a pronounced nonlinear effect on the predicted (and experimentally verified) dynamic force coefficients for smooth seals. However, in honeycomb gas seals, even large rotor center excursions do not sensibly affect the effective local film thickness, maintaining the flow azimuthal symmetry. The current model and predictions thus increase confidence in honeycomb seal design, operating performance, and reliability in actual applications.
    • Download: (1.245Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Bulk Flow Model for Off-Centered Honeycomb Gas Seals

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/135786
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorThomas Soulas
    contributor authorLuis San Andres
    date accessioned2017-05-09T00:23:49Z
    date available2017-05-09T00:23:49Z
    date copyrightJanuary, 2007
    date issued2007
    identifier issn1528-8919
    identifier otherJETPEZ-26935#185_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/135786
    description abstractA computational analysis for prediction of the static and dynamic forced performance of gas honeycomb seals at off-centered rotor conditions follows. The bulk-flow analysis, similar to the two-control volume flow model of and (1997, “ The Acoustic Influence of Cell Depth on the Rotordynamic Characteristics of Smooth-Rotor/Honeycomb-Stator Annular Gas Seals,” ASME J. Eng. Gas Turbines Power, 119, pp. 949–957), is brought without loss of generality into a single-control volume model, thus simplifying the computational process. The formulation accommodates the honeycomb effective cell depth, and existing software for annular pressure seals and is easily upgraded for damper seal analysis. An analytical perturbation method for derivation of zeroth- and first-order flow fields renders the seal equilibrium response and frequency-dependent dynamic force impedances, respectively. Numerical predictions for a centered straight-bore honeycomb gas seal shows good agreement with experimentally identified impedances, hence validating the model and confirming the paramount influence of excitation frequency on the rotordynamic force coefficients of honeycomb seals. The effect of rotor eccentricity on the static and dynamic forced response of a smooth annular seal and a honeycomb seal is evaluated for characteristic pressure differentials and rotor speeds. Leakage for the two seal types increases slightly as the rotor eccentricity increases. Rotor off-centering has a pronounced nonlinear effect on the predicted (and experimentally verified) dynamic force coefficients for smooth seals. However, in honeycomb gas seals, even large rotor center excursions do not sensibly affect the effective local film thickness, maintaining the flow azimuthal symmetry. The current model and predictions thus increase confidence in honeycomb seal design, operating performance, and reliability in actual applications.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Bulk Flow Model for Off-Centered Honeycomb Gas Seals
    typeJournal Paper
    journal volume129
    journal issue1
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.2227031
    journal fristpage185
    journal lastpage194
    identifier eissn0742-4795
    treeJournal of Engineering for Gas Turbines and Power:;2007:;volume( 129 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian