YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling the Tribochemical Aspects of Friction and Gradual Wear of Diamond-Like Carbon Films

    Source: Journal of Applied Mechanics:;2007:;volume( 074 ):;issue: 001::page 23
    Author:
    Feodor M. Borodich
    ,
    Chad S. Korach
    ,
    Leon M. Keer
    DOI: 10.1115/1.2172267
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Problems in nanomechanics often need to combine mechanical approaches together with methods of physics and chemistry that are outside of the traditional mechanics scope. Recent experimental studies of dry sliding between two hydrogenated DLC (diamond-like carbon) coated counterparts in low oxygen environment showed that adsorbates have considerable influence on friction and the friction coefficient increases with the increasing of the time interval between contacts. The observed friction phenomena are assumed caused by a reaction between the adsorbate and carbon atoms of the coatings, and when the slider passes a point on the track, it removes mechanically some adsorbate from the surface. The mechanical action leads to reexposure of the surface to gases in the environment. This paper focuses on physical and tribochemical processes that occur in sliding contact between the DLC coated slider and the counterpart. We develop further our recently presented model of the process and assume that there is a transient short-life high temperature field at the vicinities of contacting protuberances that may cause various transformations of the surface. In particular, the sp3 phase of DLC films may transform to graphite-like sp2 carbon. Our model does not depend directly on the assumption that the adsorbate is oxygen. However, due to the prevalence of oxygen in atmospheric gas it is assumed that the adsorbate is oxygen in the model presented. We suppose that first an oxygen molecule becomes physically adsorbed to the surface and then due to rubbing the molecule dissociates into two chemically active oxygen atoms. This process leads to chemisorbtion between the carbon atoms of the coating and the “sticky” oxygen atoms. The latter atoms can interact with the counterpart. Our modeling established a direct connection between this kind of molecular friction and gradual wear. In particular, it is shown that the initial roughness of the DLC surface may have a considerable influence on the probability of breaking bonds during mechanical removal of adsorbate. Ab initio calculations of the bond dissociation energies between carbon atoms and carbon-oxygen atoms were performed using GAUSSIAN98 at the Møller-Plesset level of model chemistry. The bond dissociation energy found for the carbon-carbon bonds is 523kJ∕mol, while for the carbon-oxygen bonds it is 1447kJ∕mol. It is assumed that carbon wear particles will not be formed during gradual degradation since the coating carbon molecules are dissolved within the environment gases. The model helps to explain how microscopic processes, such as the breaking and forming of interatomic bonds, may affect macroscopic phenomena, such as friction and wear.
    keyword(s): Friction , Wear , Carbon , Cycles , Hydrogen , Atoms , Modeling , Carbon films , Disks , Diamonds , Oxygen AND Probability ,
    • Download: (174.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling the Tribochemical Aspects of Friction and Gradual Wear of Diamond-Like Carbon Films

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/135169
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorFeodor M. Borodich
    contributor authorChad S. Korach
    contributor authorLeon M. Keer
    date accessioned2017-05-09T00:22:37Z
    date available2017-05-09T00:22:37Z
    date copyrightJanuary, 2007
    date issued2007
    identifier issn0021-8936
    identifier otherJAMCAV-26613#23_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/135169
    description abstractProblems in nanomechanics often need to combine mechanical approaches together with methods of physics and chemistry that are outside of the traditional mechanics scope. Recent experimental studies of dry sliding between two hydrogenated DLC (diamond-like carbon) coated counterparts in low oxygen environment showed that adsorbates have considerable influence on friction and the friction coefficient increases with the increasing of the time interval between contacts. The observed friction phenomena are assumed caused by a reaction between the adsorbate and carbon atoms of the coatings, and when the slider passes a point on the track, it removes mechanically some adsorbate from the surface. The mechanical action leads to reexposure of the surface to gases in the environment. This paper focuses on physical and tribochemical processes that occur in sliding contact between the DLC coated slider and the counterpart. We develop further our recently presented model of the process and assume that there is a transient short-life high temperature field at the vicinities of contacting protuberances that may cause various transformations of the surface. In particular, the sp3 phase of DLC films may transform to graphite-like sp2 carbon. Our model does not depend directly on the assumption that the adsorbate is oxygen. However, due to the prevalence of oxygen in atmospheric gas it is assumed that the adsorbate is oxygen in the model presented. We suppose that first an oxygen molecule becomes physically adsorbed to the surface and then due to rubbing the molecule dissociates into two chemically active oxygen atoms. This process leads to chemisorbtion between the carbon atoms of the coating and the “sticky” oxygen atoms. The latter atoms can interact with the counterpart. Our modeling established a direct connection between this kind of molecular friction and gradual wear. In particular, it is shown that the initial roughness of the DLC surface may have a considerable influence on the probability of breaking bonds during mechanical removal of adsorbate. Ab initio calculations of the bond dissociation energies between carbon atoms and carbon-oxygen atoms were performed using GAUSSIAN98 at the Møller-Plesset level of model chemistry. The bond dissociation energy found for the carbon-carbon bonds is 523kJ∕mol, while for the carbon-oxygen bonds it is 1447kJ∕mol. It is assumed that carbon wear particles will not be formed during gradual degradation since the coating carbon molecules are dissolved within the environment gases. The model helps to explain how microscopic processes, such as the breaking and forming of interatomic bonds, may affect macroscopic phenomena, such as friction and wear.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleModeling the Tribochemical Aspects of Friction and Gradual Wear of Diamond-Like Carbon Films
    typeJournal Paper
    journal volume74
    journal issue1
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.2172267
    journal fristpage23
    journal lastpage30
    identifier eissn1528-9036
    keywordsFriction
    keywordsWear
    keywordsCarbon
    keywordsCycles
    keywordsHydrogen
    keywordsAtoms
    keywordsModeling
    keywordsCarbon films
    keywordsDisks
    keywordsDiamonds
    keywordsOxygen AND Probability
    treeJournal of Applied Mechanics:;2007:;volume( 074 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian