YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Dual Euler Basis: Constraints, Potentials, and Lagrange’s Equations in Rigid-Body Dynamics

    Source: Journal of Applied Mechanics:;2007:;volume( 074 ):;issue: 002::page 256
    Author:
    Oliver M. O’Reilly
    DOI: 10.1115/1.2190231
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Given a specific set of Euler angles, it is common to ask what representations conservative moments and constraint moments possess. In this paper, we discuss the role that a non-orthogonal basis, which we call the dual Euler basis, plays in the representations. The use of the basis is illustrated with applications to potential energies, constraints, and Lagrange’s equations of motion.
    keyword(s): Dynamics (Mechanics) , Rotation , Equations of motion AND Equations ,
    • Download: (81.72Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Dual Euler Basis: Constraints, Potentials, and Lagrange’s Equations in Rigid-Body Dynamics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/135146
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorOliver M. O’Reilly
    date accessioned2017-05-09T00:22:34Z
    date available2017-05-09T00:22:34Z
    date copyrightMarch, 2007
    date issued2007
    identifier issn0021-8936
    identifier otherJAMCAV-26621#256_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/135146
    description abstractGiven a specific set of Euler angles, it is common to ask what representations conservative moments and constraint moments possess. In this paper, we discuss the role that a non-orthogonal basis, which we call the dual Euler basis, plays in the representations. The use of the basis is illustrated with applications to potential energies, constraints, and Lagrange’s equations of motion.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Dual Euler Basis: Constraints, Potentials, and Lagrange’s Equations in Rigid-Body Dynamics
    typeJournal Paper
    journal volume74
    journal issue2
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.2190231
    journal fristpage256
    journal lastpage258
    identifier eissn1528-9036
    keywordsDynamics (Mechanics)
    keywordsRotation
    keywordsEquations of motion AND Equations
    treeJournal of Applied Mechanics:;2007:;volume( 074 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian