YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Null-Field Approach for the Multi-inclusion Problem Under Antiplane Shears

    Source: Journal of Applied Mechanics:;2007:;volume( 074 ):;issue: 003::page 469
    Author:
    Jeng-Tzong Chen
    ,
    An-Chien Wu
    DOI: 10.1115/1.2338056
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper, we derive the null-field integral equation for an infinite medium containing circular holes and/or inclusions with arbitrary radii and positions under the remote antiplane shear. To fully capture the circular geometries, separable expressions of fundamental solutions in the polar coordinate for field and source points and Fourier series for boundary densities are adopted to ensure the exponential convergence. By moving the null-field point to the boundary, singular and hypersingular integrals are transformed to series sums after introducing the concept of degenerate kernels. Not only the singularity but also the sense of principle values are novelly avoided. For the calculation of boundary stress, the Hadamard principal value for hypersingularity is not required and can be easily calculated by using series sums. Besides, the boundary-layer effect is eliminated owing to the introduction of degenerate kernels. The solution is formulated in a manner of semi-analytical form since error purely attributes to the truncation of Fourier series. The method is basically a numerical method, and because of its semi-analytical nature, it possesses certain advantages over the conventional boundary element method. The exact solution for a single inclusion is derived using the present formulation and matches well with the Honein et al. ’s solution by using the complex-variable formulation (, , and , 1992, Appl. Math., 50, pp. 479–499). Several problems of two holes, two inclusions, one cavity surrounded by two inclusions and three inclusions are revisited to demonstrate the validity of our method. The convergence test and boundary-layer effect are also addressed. The proposed formulation can be generalized to multiple circular inclusions and cavities in a straightforward way without any difficulty.
    • Download: (1.978Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Null-Field Approach for the Multi-inclusion Problem Under Antiplane Shears

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/135119
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorJeng-Tzong Chen
    contributor authorAn-Chien Wu
    date accessioned2017-05-09T00:22:30Z
    date available2017-05-09T00:22:30Z
    date copyrightMay, 2007
    date issued2007
    identifier issn0021-8936
    identifier otherJAMCAV-26636#469_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/135119
    description abstractIn this paper, we derive the null-field integral equation for an infinite medium containing circular holes and/or inclusions with arbitrary radii and positions under the remote antiplane shear. To fully capture the circular geometries, separable expressions of fundamental solutions in the polar coordinate for field and source points and Fourier series for boundary densities are adopted to ensure the exponential convergence. By moving the null-field point to the boundary, singular and hypersingular integrals are transformed to series sums after introducing the concept of degenerate kernels. Not only the singularity but also the sense of principle values are novelly avoided. For the calculation of boundary stress, the Hadamard principal value for hypersingularity is not required and can be easily calculated by using series sums. Besides, the boundary-layer effect is eliminated owing to the introduction of degenerate kernels. The solution is formulated in a manner of semi-analytical form since error purely attributes to the truncation of Fourier series. The method is basically a numerical method, and because of its semi-analytical nature, it possesses certain advantages over the conventional boundary element method. The exact solution for a single inclusion is derived using the present formulation and matches well with the Honein et al. ’s solution by using the complex-variable formulation (, , and , 1992, Appl. Math., 50, pp. 479–499). Several problems of two holes, two inclusions, one cavity surrounded by two inclusions and three inclusions are revisited to demonstrate the validity of our method. The convergence test and boundary-layer effect are also addressed. The proposed formulation can be generalized to multiple circular inclusions and cavities in a straightforward way without any difficulty.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNull-Field Approach for the Multi-inclusion Problem Under Antiplane Shears
    typeJournal Paper
    journal volume74
    journal issue3
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.2338056
    journal fristpage469
    journal lastpage487
    identifier eissn1528-9036
    treeJournal of Applied Mechanics:;2007:;volume( 074 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian