YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Free Vibrations of a Rotating Inclined Beam

    Source: Journal of Applied Mechanics:;2007:;volume( 074 ):;issue: 003::page 406
    Author:
    Sen Yung Lee
    ,
    Jer Jia Sheu
    DOI: 10.1115/1.2200657
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: By utilizing the Hamilton principle and the consistent linearization of the fully nonlinear beam theory, two coupled governing differential equations for a rotating inclined beam are derived. Both the extensional deformation and the Coriolis force effect are considered. It is shown that the vibration system can be considered as the superposition of a static subsystem and a dynamic subsystem. The method of Frobenius is used to establish the exact series solutions of the system. Several frequency relations that provide general qualitative relations between the natural frequencies and the physical parameters are revealed without numerical analysis. Finally, numerical results are given to illustrate the general qualitative relations and the influence of the physical parameters on the natural frequencies of the dynamic system.
    keyword(s): Coriolis force , Differential equations , Frequency , Rotating beams , Free vibrations , Dynamic systems , Boundary-value problems , Equations AND Numerical analysis ,
    • Download: (192.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Free Vibrations of a Rotating Inclined Beam

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/135110
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorSen Yung Lee
    contributor authorJer Jia Sheu
    date accessioned2017-05-09T00:22:29Z
    date available2017-05-09T00:22:29Z
    date copyrightMay, 2007
    date issued2007
    identifier issn0021-8936
    identifier otherJAMCAV-26636#406_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/135110
    description abstractBy utilizing the Hamilton principle and the consistent linearization of the fully nonlinear beam theory, two coupled governing differential equations for a rotating inclined beam are derived. Both the extensional deformation and the Coriolis force effect are considered. It is shown that the vibration system can be considered as the superposition of a static subsystem and a dynamic subsystem. The method of Frobenius is used to establish the exact series solutions of the system. Several frequency relations that provide general qualitative relations between the natural frequencies and the physical parameters are revealed without numerical analysis. Finally, numerical results are given to illustrate the general qualitative relations and the influence of the physical parameters on the natural frequencies of the dynamic system.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFree Vibrations of a Rotating Inclined Beam
    typeJournal Paper
    journal volume74
    journal issue3
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.2200657
    journal fristpage406
    journal lastpage414
    identifier eissn1528-9036
    keywordsCoriolis force
    keywordsDifferential equations
    keywordsFrequency
    keywordsRotating beams
    keywordsFree vibrations
    keywordsDynamic systems
    keywordsBoundary-value problems
    keywordsEquations AND Numerical analysis
    treeJournal of Applied Mechanics:;2007:;volume( 074 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian