Stoneley Wave Generation in Joined Materials With and Without Thermal Relaxation Due to Thermal MismatchSource: Journal of Applied Mechanics:;2007:;volume( 074 ):;issue: 005::page 1019Author:L. M. Brock
DOI: 10.1115/1.2723826Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: Two perfectly bonded, thermoelastic half-spaces differ only in their thermal parameters. Their governing equations include as special cases the Fourier heat conduction model and models with either one or two thermal relaxation times. An exact solution in transform space for the problem of line loads applied to the interface is obtained. Even though the elastic properties of the half-spaces are identical, a Stoneley function arises, and conditions for the existence of roots are more restrictive than for the isothermal case of two elastically dissimilar half-spaces. Moreover, roots may be either real or imaginary. An exact expression for the time transform of the Stoneley residue contribution to interface temperature change is derived. Asymptotic results for the inverse that, valid for either very short or very long times after load application, is obtained and show that, for long times, residue contributions for all three special cases obey Fourier heat conduction. Short-time results are sensitive to case differences. In particular, a time step load produces a propagating step in temperature for the Fourier and double-relaxation time models, but a propagating impulse for the single-relaxation time model.
keyword(s): Temperature , Relaxation (Physics) , Stress , Waves , Equations AND Space ,
|
Collections
Show full item record
contributor author | L. M. Brock | |
date accessioned | 2017-05-09T00:22:25Z | |
date available | 2017-05-09T00:22:25Z | |
date copyright | September, 2007 | |
date issued | 2007 | |
identifier issn | 0021-8936 | |
identifier other | JAMCAV-26656#1019_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/135074 | |
description abstract | Two perfectly bonded, thermoelastic half-spaces differ only in their thermal parameters. Their governing equations include as special cases the Fourier heat conduction model and models with either one or two thermal relaxation times. An exact solution in transform space for the problem of line loads applied to the interface is obtained. Even though the elastic properties of the half-spaces are identical, a Stoneley function arises, and conditions for the existence of roots are more restrictive than for the isothermal case of two elastically dissimilar half-spaces. Moreover, roots may be either real or imaginary. An exact expression for the time transform of the Stoneley residue contribution to interface temperature change is derived. Asymptotic results for the inverse that, valid for either very short or very long times after load application, is obtained and show that, for long times, residue contributions for all three special cases obey Fourier heat conduction. Short-time results are sensitive to case differences. In particular, a time step load produces a propagating step in temperature for the Fourier and double-relaxation time models, but a propagating impulse for the single-relaxation time model. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Stoneley Wave Generation in Joined Materials With and Without Thermal Relaxation Due to Thermal Mismatch | |
type | Journal Paper | |
journal volume | 74 | |
journal issue | 5 | |
journal title | Journal of Applied Mechanics | |
identifier doi | 10.1115/1.2723826 | |
journal fristpage | 1019 | |
journal lastpage | 1025 | |
identifier eissn | 1528-9036 | |
keywords | Temperature | |
keywords | Relaxation (Physics) | |
keywords | Stress | |
keywords | Waves | |
keywords | Equations AND Space | |
tree | Journal of Applied Mechanics:;2007:;volume( 074 ):;issue: 005 | |
contenttype | Fulltext |