YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design Loads for Wind Turbines Using the Environmental Contour Method

    Source: Journal of Solar Energy Engineering:;2006:;volume( 128 ):;issue: 004::page 554
    Author:
    Korn Saranyasoontorn
    ,
    Lance Manuel
    DOI: 10.1115/1.2346700
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: When interest is in establishing ultimate design loads for wind turbines such that a service life of, say, 20 years is assured, alternative procedures are available. One class of methods works by employing statistical loads extrapolation techniques following development first of 10-minute load maxima distributions (conditional on inflow parameters such as mean wind speed and turbulence intensity). The parametric conditional load distributions require extensive turbine response simulations over the entire inflow parameter range. We will refer to this first class of methods as the “parametric method.” An alternative method is based on traditional structural reliability concepts and isolates only a subset of interesting inflow parameter combinations that are easily first found by working backward from the target return period of interest. This so-called inverse reliability method can take on various forms depending on the number of variables that are modeled as random. An especially attractive form that separates inflow (environmental) variables from turbine load∕response variables and further neglects variability in the load variables given inflow is referred to as the environmental contour (EC) method. We shall show that the EC method requires considerably smaller amounts of computation than the parametric method. We compare accuracy and efficiency of the two methods in 1- and 20-year design out-of-plane blade bending loads at the root of two 1.5 MW turbines. Simulation models for these two turbines with contrasting features, in that one is stall-regulated and the other pitch-regulated, are used here. Refinements to the EC method that account for the effects of the neglected response variability are proposed to improve the turbine design load estimates.
    • Download: (590.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design Loads for Wind Turbines Using the Environmental Contour Method

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/134587
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorKorn Saranyasoontorn
    contributor authorLance Manuel
    date accessioned2017-05-09T00:21:31Z
    date available2017-05-09T00:21:31Z
    date copyrightNovember, 2006
    date issued2006
    identifier issn0199-6231
    identifier otherJSEEDO-28399#554_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/134587
    description abstractWhen interest is in establishing ultimate design loads for wind turbines such that a service life of, say, 20 years is assured, alternative procedures are available. One class of methods works by employing statistical loads extrapolation techniques following development first of 10-minute load maxima distributions (conditional on inflow parameters such as mean wind speed and turbulence intensity). The parametric conditional load distributions require extensive turbine response simulations over the entire inflow parameter range. We will refer to this first class of methods as the “parametric method.” An alternative method is based on traditional structural reliability concepts and isolates only a subset of interesting inflow parameter combinations that are easily first found by working backward from the target return period of interest. This so-called inverse reliability method can take on various forms depending on the number of variables that are modeled as random. An especially attractive form that separates inflow (environmental) variables from turbine load∕response variables and further neglects variability in the load variables given inflow is referred to as the environmental contour (EC) method. We shall show that the EC method requires considerably smaller amounts of computation than the parametric method. We compare accuracy and efficiency of the two methods in 1- and 20-year design out-of-plane blade bending loads at the root of two 1.5 MW turbines. Simulation models for these two turbines with contrasting features, in that one is stall-regulated and the other pitch-regulated, are used here. Refinements to the EC method that account for the effects of the neglected response variability are proposed to improve the turbine design load estimates.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDesign Loads for Wind Turbines Using the Environmental Contour Method
    typeJournal Paper
    journal volume128
    journal issue4
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.2346700
    journal fristpage554
    journal lastpage561
    identifier eissn1528-8986
    treeJournal of Solar Energy Engineering:;2006:;volume( 128 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian