YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Hydrogen Fueled Spark-Ignition Engines Predictive and Experimental Performance

    Source: Journal of Engineering for Gas Turbines and Power:;2006:;volume( 128 ):;issue: 001::page 230
    Author:
    Hailin Li
    ,
    Ghazi A. Karim
    DOI: 10.1115/1.2055987
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Hydrogen is well recognized as a suitable fuel for spark-ignition engine applications that has many unique attractive features and limitations. It is a fuel that can continue potentially to meet the ever-increasingly stringent regulations for exhaust and greenhouse gas emissions. The application of hydrogen as an engine fuel has been tried over many decades by numerous investigators with varying degrees of success. However, the performance data reported often tend not to display consistent agreement between the various investigators, mainly because of the wide differences in engine type, size, operating conditions used, and the differing criteria employed to judge whether knock is taking place or not. With the ever-increasing interest in hydrogen as an engine fuel, there is a need to be able to model extensively various features of the performance of spark ignition (S.I.) hydrogen engines so as to investigate and compare reliably the performance of widely different engines under a wide variety of operating conditions. In the paper we employ a quasidimensional two-zone model for the operation of S.I. engines when fueled with hydrogen. In this approach, the engine combustion chamber at any instant of time during combustion is considered to be divided into two temporally varying zones: a burned zone and an unburned zone. The model incorporates a detailed chemical kinetic model scheme of 30 reaction steps and 12 species, to simulate the oxidation reactions of hydrogen in air. A knock prediction model, developed previously for S.I. methane-hydrogen fueled engine applications was extended to consider operation on hydrogen. The effects of changes in operating conditions, including a very wide range of variations in the equivalence ratio on the onset of knock and its intensity, combustion duration, power, efficiency, and operational limits were investigated. The results of this predictive approach were shown to validate well against the corresponding experimental results, obtained mostly in a variable compression ratio CFR engine. On this basis, the effects of changes in some of the key operational engine variables, such as compression ratio, intake temperature, and spark timing are presented and discussed. Some guidelines for superior knock-free operation of engines on hydrogen are also made.
    • Download: (142.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Hydrogen Fueled Spark-Ignition Engines Predictive and Experimental Performance

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/133740
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorHailin Li
    contributor authorGhazi A. Karim
    date accessioned2017-05-09T00:19:58Z
    date available2017-05-09T00:19:58Z
    date copyrightJanuary, 2006
    date issued2006
    identifier issn1528-8919
    identifier otherJETPEZ-26894#230_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/133740
    description abstractHydrogen is well recognized as a suitable fuel for spark-ignition engine applications that has many unique attractive features and limitations. It is a fuel that can continue potentially to meet the ever-increasingly stringent regulations for exhaust and greenhouse gas emissions. The application of hydrogen as an engine fuel has been tried over many decades by numerous investigators with varying degrees of success. However, the performance data reported often tend not to display consistent agreement between the various investigators, mainly because of the wide differences in engine type, size, operating conditions used, and the differing criteria employed to judge whether knock is taking place or not. With the ever-increasing interest in hydrogen as an engine fuel, there is a need to be able to model extensively various features of the performance of spark ignition (S.I.) hydrogen engines so as to investigate and compare reliably the performance of widely different engines under a wide variety of operating conditions. In the paper we employ a quasidimensional two-zone model for the operation of S.I. engines when fueled with hydrogen. In this approach, the engine combustion chamber at any instant of time during combustion is considered to be divided into two temporally varying zones: a burned zone and an unburned zone. The model incorporates a detailed chemical kinetic model scheme of 30 reaction steps and 12 species, to simulate the oxidation reactions of hydrogen in air. A knock prediction model, developed previously for S.I. methane-hydrogen fueled engine applications was extended to consider operation on hydrogen. The effects of changes in operating conditions, including a very wide range of variations in the equivalence ratio on the onset of knock and its intensity, combustion duration, power, efficiency, and operational limits were investigated. The results of this predictive approach were shown to validate well against the corresponding experimental results, obtained mostly in a variable compression ratio CFR engine. On this basis, the effects of changes in some of the key operational engine variables, such as compression ratio, intake temperature, and spark timing are presented and discussed. Some guidelines for superior knock-free operation of engines on hydrogen are also made.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleHydrogen Fueled Spark-Ignition Engines Predictive and Experimental Performance
    typeJournal Paper
    journal volume128
    journal issue1
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.2055987
    journal fristpage230
    journal lastpage236
    identifier eissn0742-4795
    treeJournal of Engineering for Gas Turbines and Power:;2006:;volume( 128 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian