Quasidimensional Modeling of Direct Injection Diesel Engine Nitric Oxide, Soot, and Unburned Hydrocarbon EmissionsSource: Journal of Engineering for Gas Turbines and Power:;2006:;volume( 128 ):;issue: 002::page 388DOI: 10.1115/1.2056027Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: In this study we report the development and validation of phenomenological models for predicting direct injection (DI) diesel engine emissions, including nitric oxide (NO), soot, and unburned hydrocarbons (HC), using a full engine cycle simulation. The cycle simulation developed earlier by the authors ( and , 2001, SAE Transactions: Journal of Engines, 2001-01-1246) features a quasidimensional, multizone, spray combustion model to account for transient spray evolution, fuel–air mixing, ignition and combustion. The Zeldovich mechanism is used for predicting NO emissions. Soot formation and oxidation is calculated with a semiempirical, two-rate equation model. Unburned HC emissions models account for three major HC sources in DI diesel engines: (1) leaned-out fuel during the ignition delay, (2) fuel yielded by the sac volume and nozzle hole, and (3) overpenetrated fuel. The emissions models have been validated against experimental data obtained from representative heavy-duty DI diesel engines. It is shown that the models can predict the emissions with reasonable accuracy. Following validation, the usefulness of the cycle simulation as a practical design tool is demonstrated with a case study of the effect of the discharge coefficient of the injector nozzle on pollutant emissions.
keyword(s): Fuels , Soot , Emissions , Nozzles , Engines , Diesel engines AND Sprays ,
|
Show full item record
contributor author | Dohoy Jung | |
contributor author | Dennis N. Assanis | |
date accessioned | 2017-05-09T00:19:53Z | |
date available | 2017-05-09T00:19:53Z | |
date copyright | April, 2006 | |
date issued | 2006 | |
identifier issn | 1528-8919 | |
identifier other | JETPEZ-26905#388_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/133699 | |
description abstract | In this study we report the development and validation of phenomenological models for predicting direct injection (DI) diesel engine emissions, including nitric oxide (NO), soot, and unburned hydrocarbons (HC), using a full engine cycle simulation. The cycle simulation developed earlier by the authors ( and , 2001, SAE Transactions: Journal of Engines, 2001-01-1246) features a quasidimensional, multizone, spray combustion model to account for transient spray evolution, fuel–air mixing, ignition and combustion. The Zeldovich mechanism is used for predicting NO emissions. Soot formation and oxidation is calculated with a semiempirical, two-rate equation model. Unburned HC emissions models account for three major HC sources in DI diesel engines: (1) leaned-out fuel during the ignition delay, (2) fuel yielded by the sac volume and nozzle hole, and (3) overpenetrated fuel. The emissions models have been validated against experimental data obtained from representative heavy-duty DI diesel engines. It is shown that the models can predict the emissions with reasonable accuracy. Following validation, the usefulness of the cycle simulation as a practical design tool is demonstrated with a case study of the effect of the discharge coefficient of the injector nozzle on pollutant emissions. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Quasidimensional Modeling of Direct Injection Diesel Engine Nitric Oxide, Soot, and Unburned Hydrocarbon Emissions | |
type | Journal Paper | |
journal volume | 128 | |
journal issue | 2 | |
journal title | Journal of Engineering for Gas Turbines and Power | |
identifier doi | 10.1115/1.2056027 | |
journal fristpage | 388 | |
journal lastpage | 396 | |
identifier eissn | 0742-4795 | |
keywords | Fuels | |
keywords | Soot | |
keywords | Emissions | |
keywords | Nozzles | |
keywords | Engines | |
keywords | Diesel engines AND Sprays | |
tree | Journal of Engineering for Gas Turbines and Power:;2006:;volume( 128 ):;issue: 002 | |
contenttype | Fulltext |