YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Bump-Type Foil Bearing Structural Stiffness: Experiments and Predictions

    Source: Journal of Engineering for Gas Turbines and Power:;2006:;volume( 128 ):;issue: 003::page 653
    Author:
    Dario Rubio
    ,
    Luis San Andrés
    DOI: 10.1115/1.2056047
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Gas foil bearings (FB) satisfy many of the requirements noted for novel oil-free turbomachinery. However, FB design remains largely empirical, in spite of successful commercial applications. The mechanical structural characteristics of foil bearings, namely stiffness and damping, have been largely ignored in the archival literature. Four commercial bump-type foil bearings were acquired to measure their load capacity under conditions of no shaft rotation. The test bearings contain a single Teflon-coated foil supported on 25 bumps. The nominal radial clearance is 0.036mm for a 38mm journal. A simple test setup was assembled to measure the FB deflections resulting from static loads. The tests were conducted with three shafts of increasing diameter to induce a degree of preload into the FB structure. Static measurements show nonlinear FB deflections, varying with the orientation of the load relative to the foil spot weld. Loading and unloading tests evidence hysteresis. The FB structural stiffness increases as the bumps-foil radial deflection increases (hardening effect). The assembly preload results in notable stiffness changes, in particular for small radial loads. A simple analytical model assembles individual bump stiffnesses and renders predictions for the FB structural stiffness as a function of the bump geometry and material, dry-friction coefficient, load orientation, clearance and preload. The model predicts well the test data, including the hardening effect. The uncertainty in the actual clearance (gap) upon assembly of a shaft into a FB affects most of the predictions.
    • Download: (1016.Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Bump-Type Foil Bearing Structural Stiffness: Experiments and Predictions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/133670
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorDario Rubio
    contributor authorLuis San Andrés
    date accessioned2017-05-09T00:19:50Z
    date available2017-05-09T00:19:50Z
    date copyrightJuly, 2006
    date issued2006
    identifier issn1528-8919
    identifier otherJETPEZ-26914#653_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/133670
    description abstractGas foil bearings (FB) satisfy many of the requirements noted for novel oil-free turbomachinery. However, FB design remains largely empirical, in spite of successful commercial applications. The mechanical structural characteristics of foil bearings, namely stiffness and damping, have been largely ignored in the archival literature. Four commercial bump-type foil bearings were acquired to measure their load capacity under conditions of no shaft rotation. The test bearings contain a single Teflon-coated foil supported on 25 bumps. The nominal radial clearance is 0.036mm for a 38mm journal. A simple test setup was assembled to measure the FB deflections resulting from static loads. The tests were conducted with three shafts of increasing diameter to induce a degree of preload into the FB structure. Static measurements show nonlinear FB deflections, varying with the orientation of the load relative to the foil spot weld. Loading and unloading tests evidence hysteresis. The FB structural stiffness increases as the bumps-foil radial deflection increases (hardening effect). The assembly preload results in notable stiffness changes, in particular for small radial loads. A simple analytical model assembles individual bump stiffnesses and renders predictions for the FB structural stiffness as a function of the bump geometry and material, dry-friction coefficient, load orientation, clearance and preload. The model predicts well the test data, including the hardening effect. The uncertainty in the actual clearance (gap) upon assembly of a shaft into a FB affects most of the predictions.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleBump-Type Foil Bearing Structural Stiffness: Experiments and Predictions
    typeJournal Paper
    journal volume128
    journal issue3
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.2056047
    journal fristpage653
    journal lastpage660
    identifier eissn0742-4795
    treeJournal of Engineering for Gas Turbines and Power:;2006:;volume( 128 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian