YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Adaptation Approach for Gas Turbine Design-Point Performance Simulation

    Source: Journal of Engineering for Gas Turbines and Power:;2006:;volume( 128 ):;issue: 004::page 789
    Author:
    Y. G. Li
    ,
    M. A. Newby
    ,
    P. Pilidis
    DOI: 10.1115/1.2136369
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Accurate simulation and understanding of gas turbine performance is very useful for gas turbine users. Such a simulation and performance analysis must start from a design point. When some of the engine component parameters for an existing engine are not available, they must be estimated in order that the performance analysis can be carried out. However, the initially simulated design-point performance of the engine using estimated engine component parameters may give a result that is different from the actual measured performance. This difference may be reduced with better estimation of these unknown component parameters. However, this can become a difficult task for performance engineers, let alone those without enough engine performance knowledge and experience, when the number of design-point component parameters and the number of measurable/target performance parameters become large. In this paper, a gas turbine design-point performance adaptation approach has been developed to best estimate the unknown design-point component parameters and match the available design-point engine measurable/target performance. In the approach, the initially unknown component parameters may be compressor pressure ratios and efficiencies, turbine entry temperature, turbine efficiencies, air mass flow rate, cooling flows, bypass ratio, etc. The engine target (measurable) performance parameters may be thrust and specific fuel consumption for aero engines, shaft power and thermal efficiency for industrial engines, gas path pressures and temperatures, etc. To select, initially, the design point component parameters, a bar chart has been used to analyze the sensitivity of the engine target performance parameters to the design-point component parameters. The developed adaptation approach has been applied to a design-point performance matching problem of an industrial gas turbine engine GE LM2500+ operating in Manx Electricity Authority (MEA), UK. The application shows that the adaptation approach is very effective and fast to produce a set of design-point component parameters of a model engine that matches the actual engine performance very well. Theoretically, the developed techniques can be applied to other gas turbine engines.
    keyword(s): Simulation , Design , Gas turbines , Engines , Compressors , Turbines AND Flow (Dynamics) ,
    • Download: (595.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Adaptation Approach for Gas Turbine Design-Point Performance Simulation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/133627
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorY. G. Li
    contributor authorM. A. Newby
    contributor authorP. Pilidis
    date accessioned2017-05-09T00:19:44Z
    date available2017-05-09T00:19:44Z
    date copyrightOctober, 2006
    date issued2006
    identifier issn1528-8919
    identifier otherJETPEZ-26926#789_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/133627
    description abstractAccurate simulation and understanding of gas turbine performance is very useful for gas turbine users. Such a simulation and performance analysis must start from a design point. When some of the engine component parameters for an existing engine are not available, they must be estimated in order that the performance analysis can be carried out. However, the initially simulated design-point performance of the engine using estimated engine component parameters may give a result that is different from the actual measured performance. This difference may be reduced with better estimation of these unknown component parameters. However, this can become a difficult task for performance engineers, let alone those without enough engine performance knowledge and experience, when the number of design-point component parameters and the number of measurable/target performance parameters become large. In this paper, a gas turbine design-point performance adaptation approach has been developed to best estimate the unknown design-point component parameters and match the available design-point engine measurable/target performance. In the approach, the initially unknown component parameters may be compressor pressure ratios and efficiencies, turbine entry temperature, turbine efficiencies, air mass flow rate, cooling flows, bypass ratio, etc. The engine target (measurable) performance parameters may be thrust and specific fuel consumption for aero engines, shaft power and thermal efficiency for industrial engines, gas path pressures and temperatures, etc. To select, initially, the design point component parameters, a bar chart has been used to analyze the sensitivity of the engine target performance parameters to the design-point component parameters. The developed adaptation approach has been applied to a design-point performance matching problem of an industrial gas turbine engine GE LM2500+ operating in Manx Electricity Authority (MEA), UK. The application shows that the adaptation approach is very effective and fast to produce a set of design-point component parameters of a model engine that matches the actual engine performance very well. Theoretically, the developed techniques can be applied to other gas turbine engines.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Adaptation Approach for Gas Turbine Design-Point Performance Simulation
    typeJournal Paper
    journal volume128
    journal issue4
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.2136369
    journal fristpage789
    journal lastpage795
    identifier eissn0742-4795
    keywordsSimulation
    keywordsDesign
    keywordsGas turbines
    keywordsEngines
    keywordsCompressors
    keywordsTurbines AND Flow (Dynamics)
    treeJournal of Engineering for Gas Turbines and Power:;2006:;volume( 128 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian