Show simple item record

contributor authorKaustubh Pathak
contributor authorSunil K. Agrawal
date accessioned2017-05-09T00:19:30Z
date available2017-05-09T00:19:30Z
date copyrightMarch, 2006
date issued2006
identifier issn0022-0434
identifier otherJDSMAA-26351#104_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/133484
description abstractIn this paper, a general framework for trajectory planning and tracking is formulated for dynamically stabilized mobile systems, e.g., inverted wheeled pendulums and autonomous helicopters. Within this framework, the system state is divided into slow and fast substates. The fast substate is used as a pseudocontrol for tracking a desired slow substate trajectory. First, an exponential fast substate controller is designed to track a fast substate reference trajectory. This fast substate reference trajectory is, in turn, planned so that the slow substate follows its desired trajectory. To ensure that the fast substate reference trajectory is feasible for the exponential controller, it is designed using band-limited “Sinc” functions whose maximum frequency is less than the inverse of the time constant of the exponential controller. To illustrate the procedure, the dynamic model of an inverted wheeled pendulum is reformulated by a partial feedback linearization such that it is amenable to the separation into slow and fast components. The planning and tracking controller design is explained using simulation results. This technique is shown to be easily embedded inside a modified nonlinear model predictive control framework for the slow subsystem. This framework tries to explicitly take the computational delay into account. The computation time required for this technique is encouraging from a real-world implementation perspective.
publisherThe American Society of Mechanical Engineers (ASME)
titleBand-Limited Trajectory Planning and Tracking for Certain Dynamically Stabilized Mobile Systems
typeJournal Paper
journal volume128
journal issue1
journal titleJournal of Dynamic Systems, Measurement, and Control
identifier doi10.1115/1.2168158
journal fristpage104
journal lastpage111
identifier eissn1528-9028
keywordsTrajectories (Physics)
keywordsPendulums
keywordsControl equipment
keywordsFeedback
keywordsSimulation results AND Computation
treeJournal of Dynamic Systems, Measurement, and Control:;2006:;volume( 128 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record