Show simple item record

contributor authorKailash Krishnaswamy
contributor authorPerry Y. Li
date accessioned2017-05-09T00:19:28Z
date available2017-05-09T00:19:28Z
date copyrightMarch, 2006
date issued2006
identifier issn0022-0434
identifier otherJDSMAA-26351#176_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/133472
description abstractHuman operated, hydraulic actuated machines are widely used in many high-power applications. Improving productivity, safety and task quality (e.g., haptic feedback in a teleoperated scenario) has been the focus of past research. For robotic systems that interact with the physical environments, passivity is a useful property for ensuring safety and interaction stability. While passivity is a well utilized concept in electromechanical robotic systems, investigation of electrohydraulic control systems that enforce this passivity property are rare. This paper proposes and experimentally demonstrates a teleoperation control algorithm that renders a hydraulic backhoe/force feedback joystick system as a two-port, coordinated, passive machine. By fully accounting for the fluid compressibility, inertia dynamics and nonlinearity, coordination performance is much improved over a previous scheme in which the coordination control approximates the hydraulic system by its kinematic behavior. This is accomplished by a novel bond graph based three step design methodology: (1) energetically invariant transformation of the system into a pair of “shape” and “locked” subsystems; (2) inversion of the shape system bond graph to derive the coordination control law; (3) use of the locked system bond graph to derive an appropriate control law to achieve a target locked system dynamics while ensuring the passivity property of the coordinated system. The proposed passive control law has been experimentally verified for its bilateral energy transfer ability and performance enhancements.
publisherThe American Society of Mechanical Engineers (ASME)
titleBond Graph Based Approach to Passive Teleoperation of a Hydraulic Backhoe
typeJournal Paper
journal volume128
journal issue1
journal titleJournal of Dynamic Systems, Measurement, and Control
identifier doi10.1115/1.2168475
journal fristpage176
journal lastpage185
identifier eissn1528-9028
keywordsDynamics (Mechanics)
keywordsDesign
keywordsInertia (Mechanics)
keywordsSystem dynamics
keywordsHaptics
keywordsForce
keywordsValves
keywordsShapes
keywordsControl equipment
keywordsCompressibility AND Algorithms
treeJournal of Dynamic Systems, Measurement, and Control:;2006:;volume( 128 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record