YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Green’s Function for a Closed, Infinite, Circular Cylindrical Elastic Shell

    Source: Journal of Applied Mechanics:;2006:;volume( 073 ):;issue: 002::page 183
    Author:
    J. G. Simmonds
    DOI: 10.1115/1.2065627
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: An acceptable variant of the Koiter–Morley equations for an elastically isotropic circular cylindrical shell is replaced by a constant coefficient fourth-order partial differential equation for a complex-valued displacement-stress function. An approximate formal solution for the associated “free-space” Green’s function (i.e., the Green’s function for a closed, infinite shell) is derived using an inner and outer expansion. The point wise error in this solution is shown rigorously to be of relative order (h∕a)(1+h∕a∣x∣), where h is the constant thickness of the shell, a is the radius of the mid surface, and ax is distance along a generator of the mid surface.
    keyword(s): Equations , Errors , Partial differential equations , Shells , Circular cylindrical shells , Functions , Vacuum , Thickness AND Stress ,
    • Download: (126.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Green’s Function for a Closed, Infinite, Circular Cylindrical Elastic Shell

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/133065
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorJ. G. Simmonds
    date accessioned2017-05-09T00:18:41Z
    date available2017-05-09T00:18:41Z
    date copyrightMarch, 2006
    date issued2006
    identifier issn0021-8936
    identifier otherJAMCAV-26598#183_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/133065
    description abstractAn acceptable variant of the Koiter–Morley equations for an elastically isotropic circular cylindrical shell is replaced by a constant coefficient fourth-order partial differential equation for a complex-valued displacement-stress function. An approximate formal solution for the associated “free-space” Green’s function (i.e., the Green’s function for a closed, infinite shell) is derived using an inner and outer expansion. The point wise error in this solution is shown rigorously to be of relative order (h∕a)(1+h∕a∣x∣), where h is the constant thickness of the shell, a is the radius of the mid surface, and ax is distance along a generator of the mid surface.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleGreen’s Function for a Closed, Infinite, Circular Cylindrical Elastic Shell
    typeJournal Paper
    journal volume73
    journal issue2
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.2065627
    journal fristpage183
    journal lastpage188
    identifier eissn1528-9036
    keywordsEquations
    keywordsErrors
    keywordsPartial differential equations
    keywordsShells
    keywordsCircular cylindrical shells
    keywordsFunctions
    keywordsVacuum
    keywordsThickness AND Stress
    treeJournal of Applied Mechanics:;2006:;volume( 073 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian