YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Reconfiguration of a Rolling Sphere: A Problem in Evolute-Involute Geometry

    Source: Journal of Applied Mechanics:;2006:;volume( 073 ):;issue: 004::page 590
    Author:
    Tuhin Das
    ,
    Ranjan Mukherjee
    DOI: 10.1115/1.2164515
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper provides a new perspective to the problem of reconfiguration of a rolling sphere. It is shown that the motion of a rolling sphere can be characterized by evolute-involute geometry. This characterization, which is a manifestation of our specific selection of Euler angle coordinates and choice of angular velocities in a rotating coordinate frame, allows us to recast the three-dimensional kinematics problem as a problem in planar geometry. This, in turn, allows a variety of optimization problems to be defined and admits infinite solution trajectories. It is shown that logarithmic spirals form a class of solution trajectories and they result in exponential convergence of the configuration variables.
    keyword(s): Motion , Trajectories (Physics) , Algorithms AND Geometry ,
    • Download: (177.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Reconfiguration of a Rolling Sphere: A Problem in Evolute-Involute Geometry

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/133021
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorTuhin Das
    contributor authorRanjan Mukherjee
    date accessioned2017-05-09T00:18:36Z
    date available2017-05-09T00:18:36Z
    date copyrightJuly, 2006
    date issued2006
    identifier issn0021-8936
    identifier otherJAMCAV-26600#590_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/133021
    description abstractThis paper provides a new perspective to the problem of reconfiguration of a rolling sphere. It is shown that the motion of a rolling sphere can be characterized by evolute-involute geometry. This characterization, which is a manifestation of our specific selection of Euler angle coordinates and choice of angular velocities in a rotating coordinate frame, allows us to recast the three-dimensional kinematics problem as a problem in planar geometry. This, in turn, allows a variety of optimization problems to be defined and admits infinite solution trajectories. It is shown that logarithmic spirals form a class of solution trajectories and they result in exponential convergence of the configuration variables.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleReconfiguration of a Rolling Sphere: A Problem in Evolute-Involute Geometry
    typeJournal Paper
    journal volume73
    journal issue4
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.2164515
    journal fristpage590
    journal lastpage597
    identifier eissn1528-9036
    keywordsMotion
    keywordsTrajectories (Physics)
    keywordsAlgorithms AND Geometry
    treeJournal of Applied Mechanics:;2006:;volume( 073 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian