YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Low-Dimensional Representations of Inflow Turbulence and Wind Turbine Response Using Proper Orthogonal Decomposition

    Source: Journal of Solar Energy Engineering:;2005:;volume( 127 ):;issue: 004::page 553
    Author:
    Korn Saranyasoontorn
    ,
    Lance Manuel
    DOI: 10.1115/1.2037108
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A demonstration of the use of Proper Orthogonal Decomposition (POD) is presented for the identification of energetic modes that characterize the spatial random field describing the inflow turbulence experienced by a wind turbine. POD techniques are efficient because a limited number of such modes can often describe the preferred turbulence spatial patterns and they can be empirically developed using data from spatial arrays of sensed input/excitation. In this study, for demonstration purposes, rather than use field data, POD modes are derived by employing the covariance matrix estimated from simulations of the spatial inflow turbulence field based on standard spectral models. The efficiency of the method in deriving reduced-order representations of the along-wind turbulence field is investigated by studying the rate of convergence (to total energy in the turbulence field) that results from the use of different numbers of POD modes, and by comparing the frequency content of reconstructed fields derived from the modes. The National Wind Technology Center’s Advanced Research Turbine (ART) is employed in the examples presented, where both inflow turbulence and turbine response are studied with low-order representations based on a limited number of inflow POD modes. Results suggest that a small number of energetic modes can recover the low-frequency energy in the inflow turbulence field as well as in the turbine response measures studied. At higher frequencies, a larger number of modes are required to accurately describe the inflow turbulence. Blade turbine response variance and extremes, however, can be approximated by a comparably smaller number of modes due to diminished influence of higher frequencies.
    • Download: (642.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Low-Dimensional Representations of Inflow Turbulence and Wind Turbine Response Using Proper Orthogonal Decomposition

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/132565
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorKorn Saranyasoontorn
    contributor authorLance Manuel
    date accessioned2017-05-09T00:17:41Z
    date available2017-05-09T00:17:41Z
    date copyrightNovember, 2005
    date issued2005
    identifier issn0199-6231
    identifier otherJSEEDO-28381#553_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/132565
    description abstractA demonstration of the use of Proper Orthogonal Decomposition (POD) is presented for the identification of energetic modes that characterize the spatial random field describing the inflow turbulence experienced by a wind turbine. POD techniques are efficient because a limited number of such modes can often describe the preferred turbulence spatial patterns and they can be empirically developed using data from spatial arrays of sensed input/excitation. In this study, for demonstration purposes, rather than use field data, POD modes are derived by employing the covariance matrix estimated from simulations of the spatial inflow turbulence field based on standard spectral models. The efficiency of the method in deriving reduced-order representations of the along-wind turbulence field is investigated by studying the rate of convergence (to total energy in the turbulence field) that results from the use of different numbers of POD modes, and by comparing the frequency content of reconstructed fields derived from the modes. The National Wind Technology Center’s Advanced Research Turbine (ART) is employed in the examples presented, where both inflow turbulence and turbine response are studied with low-order representations based on a limited number of inflow POD modes. Results suggest that a small number of energetic modes can recover the low-frequency energy in the inflow turbulence field as well as in the turbine response measures studied. At higher frequencies, a larger number of modes are required to accurately describe the inflow turbulence. Blade turbine response variance and extremes, however, can be approximated by a comparably smaller number of modes due to diminished influence of higher frequencies.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleLow-Dimensional Representations of Inflow Turbulence and Wind Turbine Response Using Proper Orthogonal Decomposition
    typeJournal Paper
    journal volume127
    journal issue4
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.2037108
    journal fristpage553
    journal lastpage562
    identifier eissn1528-8986
    treeJournal of Solar Energy Engineering:;2005:;volume( 127 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian