YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Electrostatic Forces and Stored Energy for Deformable Dielectric Materials

    Source: Journal of Applied Mechanics:;2005:;volume( 072 ):;issue: 004::page 581
    Author:
    Robert M. McMeeking
    ,
    Chad M. Landis
    DOI: 10.1115/1.1940661
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: An isothermal energy balance is formulated for a system consisting of deformable dielectric bodies, electrodes, and the surrounding space. The formulation in this paper is obtained in the electrostatic limit but with the possibility of arbitrarily large deformations of polarizable material. The energy balance recognizes that charges may be driven onto or off of the electrodes, a process accompanied by external electrical work; mechanical loads may be applied to the bodies, thereby doing work through displacements; energy is stored in the material by such features as elasticity of the lattice, piezoelectricity, and dielectric and electrostatic interactions; and nonlinear reversible material behavior such as electrostriction may occur. Thus the external work is balanced by (1) internal energy consisting of stress doing work on strain increments, (2) the energy associated with permeating free space with an electric field, and (3) by the electric field doing work on increments of electric displacement or, equivalently, polarization. For a conservative system, the internal work is stored reversibly in the body and in the underlying and surrounding space. The resulting work statement for a conservative system is considered in the special cases of isotropic deformable dielectrics and piezoelectric materials. We identify the electrostatic stress, which provides measurable information quantifying the electrostatic effects within the system, and find that it is intimately tied to the constitutive formulation for the material and the associated stored energy and cannot be independent of them. The Maxwell stress, which is related to the force exerted by the electric field on charges in the system, cannot be automatically identified with the electrostatic stress and is difficult to measure. Two well-known and one novel formula for the electrostatic stress are identified and related to specific but differing constitutive assumptions for isotropic materials. The electrostatic stress is then obtained for a specific set of assumptions in regard to a piezoelectric material. An exploration of the behavior of an actuator composed of a deformable, electroactive polymer is presented based on the formulation of the paper.
    keyword(s): Force , Electric fields , Polarization (Electricity) , Stress , Dielectric materials , Deformation , Actuators , Electrodes , Piezoelectric materials AND Vacuum ,
    • Download: (159.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Electrostatic Forces and Stored Energy for Deformable Dielectric Materials

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/131212
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorRobert M. McMeeking
    contributor authorChad M. Landis
    date accessioned2017-05-09T00:15:03Z
    date available2017-05-09T00:15:03Z
    date copyrightJuly, 2005
    date issued2005
    identifier issn0021-8936
    identifier otherJAMCAV-26592#581_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/131212
    description abstractAn isothermal energy balance is formulated for a system consisting of deformable dielectric bodies, electrodes, and the surrounding space. The formulation in this paper is obtained in the electrostatic limit but with the possibility of arbitrarily large deformations of polarizable material. The energy balance recognizes that charges may be driven onto or off of the electrodes, a process accompanied by external electrical work; mechanical loads may be applied to the bodies, thereby doing work through displacements; energy is stored in the material by such features as elasticity of the lattice, piezoelectricity, and dielectric and electrostatic interactions; and nonlinear reversible material behavior such as electrostriction may occur. Thus the external work is balanced by (1) internal energy consisting of stress doing work on strain increments, (2) the energy associated with permeating free space with an electric field, and (3) by the electric field doing work on increments of electric displacement or, equivalently, polarization. For a conservative system, the internal work is stored reversibly in the body and in the underlying and surrounding space. The resulting work statement for a conservative system is considered in the special cases of isotropic deformable dielectrics and piezoelectric materials. We identify the electrostatic stress, which provides measurable information quantifying the electrostatic effects within the system, and find that it is intimately tied to the constitutive formulation for the material and the associated stored energy and cannot be independent of them. The Maxwell stress, which is related to the force exerted by the electric field on charges in the system, cannot be automatically identified with the electrostatic stress and is difficult to measure. Two well-known and one novel formula for the electrostatic stress are identified and related to specific but differing constitutive assumptions for isotropic materials. The electrostatic stress is then obtained for a specific set of assumptions in regard to a piezoelectric material. An exploration of the behavior of an actuator composed of a deformable, electroactive polymer is presented based on the formulation of the paper.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleElectrostatic Forces and Stored Energy for Deformable Dielectric Materials
    typeJournal Paper
    journal volume72
    journal issue4
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.1940661
    journal fristpage581
    journal lastpage590
    identifier eissn1528-9036
    keywordsForce
    keywordsElectric fields
    keywordsPolarization (Electricity)
    keywordsStress
    keywordsDielectric materials
    keywordsDeformation
    keywordsActuators
    keywordsElectrodes
    keywordsPiezoelectric materials AND Vacuum
    treeJournal of Applied Mechanics:;2005:;volume( 072 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian