YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    New Approximations for Elastic Spheres Under an Oscillating Torsional Couple

    Source: Journal of Applied Mechanics:;2005:;volume( 072 ):;issue: 005::page 705
    Author:
    Daniel J. Segalman
    ,
    Michael J. Starr
    ,
    Martin W. Heinstein
    DOI: 10.1115/1.1985430
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The Lubkin solution for two spheres pressed together and then subjected to a monotonically increasing axial couple is examined numerically. The Deresiewicz asymptotic solution is compared to the full solution and its utility is evaluated. Alternative approximations for the Lubkin solution are suggested and compared. One approximation is a Padé rational function which matches the analytic solution over all rotations. The other is an exponential approximation that reproduces the asymptotic values of the analytic solution at infinitesimal and infinite rotations. Finally, finite element solutions for the Lubkin problem are compared with the exact and approximate solutions.
    keyword(s): Torque , Rotation , Energy dissipation , Finite element analysis AND Approximation ,
    • Download: (246.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      New Approximations for Elastic Spheres Under an Oscillating Torsional Couple

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/131176
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorDaniel J. Segalman
    contributor authorMichael J. Starr
    contributor authorMartin W. Heinstein
    date accessioned2017-05-09T00:15:00Z
    date available2017-05-09T00:15:00Z
    date copyrightSeptember, 2005
    date issued2005
    identifier issn0021-8936
    identifier otherJAMCAV-26593#705_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/131176
    description abstractThe Lubkin solution for two spheres pressed together and then subjected to a monotonically increasing axial couple is examined numerically. The Deresiewicz asymptotic solution is compared to the full solution and its utility is evaluated. Alternative approximations for the Lubkin solution are suggested and compared. One approximation is a Padé rational function which matches the analytic solution over all rotations. The other is an exponential approximation that reproduces the asymptotic values of the analytic solution at infinitesimal and infinite rotations. Finally, finite element solutions for the Lubkin problem are compared with the exact and approximate solutions.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNew Approximations for Elastic Spheres Under an Oscillating Torsional Couple
    typeJournal Paper
    journal volume72
    journal issue5
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.1985430
    journal fristpage705
    journal lastpage710
    identifier eissn1528-9036
    keywordsTorque
    keywordsRotation
    keywordsEnergy dissipation
    keywordsFinite element analysis AND Approximation
    treeJournal of Applied Mechanics:;2005:;volume( 072 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian