YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Wrinkling of Wide Sandwich Panels∕Beams With Orthotropic Phases by an Elasticity Approach

    Source: Journal of Applied Mechanics:;2005:;volume( 072 ):;issue: 006::page 818
    Author:
    G. A. Kardomateas
    DOI: 10.1115/1.1978919
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: There exist many formulas for the critical compression of sandwich plates, each based on a specific set of assumptions and a specific plate or beam model. It is not easy to determine the accuracy and range of validity of these rather simple formulas unless an elasticity solution exists. In this paper, we present an elasticity solution to the problem of buckling of sandwich beams or wide sandwich panels subjected to axially compressive loading (along the short side). The emphasis on this study is on the wrinkling (multi-wave) mode. The sandwich section is symmetric and all constituent phases, i.e., the facings and the core, are assumed to be orthotropic. First, the pre-buckling elasticity solution for the compressed sandwich structure is derived. Subsequently, the buckling problem is formulated as an eigen-boundary-value problem for differential equations, with the axial load being the eigenvalue. For a given configuration, two cases, namely symmetric and anti-symmetric buckling, are considered separately, and the one that dominates is accordingly determined. The complication in the sandwich construction arises due to the existence of additional “internal” conditions at the face sheet∕core interfaces. Results are produced first for isotropic phases (for which the simple formulas in the literature hold) and for different ratios of face-sheet vs core modulus and face-sheet vs core thickness. The results are compared with the different wrinkling formulas in the literature, as well as with the Euler buckling load and the Euler buckling load with transverse shear correction. Subsequently, results are produced for one or both phases being orthotropic, namely a typical sandwich made of glass∕polyester or graphite∕epoxy faces and polymeric foam or glass∕phenolic honeycomb core. The solution presented herein provides a means of accurately assessing the limitations of simplifying analyses in predicting wrinkling and global buckling in wide sandwich panels∕beams.
    keyword(s): Elasticity , Stress , Buckling , Formulas , Shear (Mechanics) , Differential equations , Waves , Foundry coatings AND Thickness ,
    • Download: (158.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Wrinkling of Wide Sandwich Panels∕Beams With Orthotropic Phases by an Elasticity Approach

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/131139
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorG. A. Kardomateas
    date accessioned2017-05-09T00:14:57Z
    date available2017-05-09T00:14:57Z
    date copyrightNovember, 2005
    date issued2005
    identifier issn0021-8936
    identifier otherJAMCAV-26595#818_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/131139
    description abstractThere exist many formulas for the critical compression of sandwich plates, each based on a specific set of assumptions and a specific plate or beam model. It is not easy to determine the accuracy and range of validity of these rather simple formulas unless an elasticity solution exists. In this paper, we present an elasticity solution to the problem of buckling of sandwich beams or wide sandwich panels subjected to axially compressive loading (along the short side). The emphasis on this study is on the wrinkling (multi-wave) mode. The sandwich section is symmetric and all constituent phases, i.e., the facings and the core, are assumed to be orthotropic. First, the pre-buckling elasticity solution for the compressed sandwich structure is derived. Subsequently, the buckling problem is formulated as an eigen-boundary-value problem for differential equations, with the axial load being the eigenvalue. For a given configuration, two cases, namely symmetric and anti-symmetric buckling, are considered separately, and the one that dominates is accordingly determined. The complication in the sandwich construction arises due to the existence of additional “internal” conditions at the face sheet∕core interfaces. Results are produced first for isotropic phases (for which the simple formulas in the literature hold) and for different ratios of face-sheet vs core modulus and face-sheet vs core thickness. The results are compared with the different wrinkling formulas in the literature, as well as with the Euler buckling load and the Euler buckling load with transverse shear correction. Subsequently, results are produced for one or both phases being orthotropic, namely a typical sandwich made of glass∕polyester or graphite∕epoxy faces and polymeric foam or glass∕phenolic honeycomb core. The solution presented herein provides a means of accurately assessing the limitations of simplifying analyses in predicting wrinkling and global buckling in wide sandwich panels∕beams.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleWrinkling of Wide Sandwich Panels∕Beams With Orthotropic Phases by an Elasticity Approach
    typeJournal Paper
    journal volume72
    journal issue6
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.1978919
    journal fristpage818
    journal lastpage825
    identifier eissn1528-9036
    keywordsElasticity
    keywordsStress
    keywordsBuckling
    keywordsFormulas
    keywordsShear (Mechanics)
    keywordsDifferential equations
    keywordsWaves
    keywordsFoundry coatings AND Thickness
    treeJournal of Applied Mechanics:;2005:;volume( 072 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian