YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Turbulence Model for Pulsatile Arterial Flows

    Source: Journal of Biomechanical Engineering:;2004:;volume( 126 ):;issue: 005::page 578
    Author:
    B. A. Younis
    ,
    S. A. Berger
    DOI: 10.1115/1.1798032
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Difficulties in predicting the behavior of some high Reynolds number flows in the circulatory system stem in part from the severe requirements placed on the turbulence model chosen to close the time-averaged equations of fluid motion. In particular, the successful turbulence model is required to (a) correctly capture the “nonequilibrium” effects wrought by the interactions of the organized mean-flow unsteadiness with the random turbulence, (b) correctly reproduce the effects of the laminar-turbulent transitional behavior that occurs at various phases of the cardiac cycle, and (c) yield good predictions of the near-wall flow behavior in conditions where the universal logarithmic law of the wall is known to be not valid. These requirements are not immediately met by standard models of turbulence that have been developed largely with reference to data from steady, fully turbulent flows in approximate local equilibrium. The purpose of this paper is to report on the development of a turbulence model suited for use in arterial flows. The model is of the two-equation eddy-viscosity variety with dependent variables that are zero-valued at a solid wall and vary linearly with distance from it. The effects of transition are introduced by coupling this model to the local value of the intermittency and obtaining the latter from the solution of a modeled transport equation. Comparisons with measurements obtained in oscillatory transitional flows in circular tubes show that the model produces substantial improvements over existing closures. Further pulsatile-flow predictions, driven by a mean-flow wave form obtained in a diseased human carotid artery, indicate that the intermittency-modified model yields much reduced levels of wall shear stress compared to the original, unmodified model. This result, which is attributed to the rapid growth in the thickness of the viscous sublayer arising from the severe acceleration of systole, argues in favor of the use of the model for the prediction of arterial flows.
    keyword(s): Flow (Dynamics) , Turbulence , Stress , Reynolds number , Equations , Viscosity , Eddies (Fluid dynamics) , Shear (Mechanics) AND Measurement ,
    • Download: (131.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Turbulence Model for Pulsatile Arterial Flows

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/129569
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorB. A. Younis
    contributor authorS. A. Berger
    date accessioned2017-05-09T00:12:16Z
    date available2017-05-09T00:12:16Z
    date copyrightOctober, 2004
    date issued2004
    identifier issn0148-0731
    identifier otherJBENDY-26391#578_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/129569
    description abstractDifficulties in predicting the behavior of some high Reynolds number flows in the circulatory system stem in part from the severe requirements placed on the turbulence model chosen to close the time-averaged equations of fluid motion. In particular, the successful turbulence model is required to (a) correctly capture the “nonequilibrium” effects wrought by the interactions of the organized mean-flow unsteadiness with the random turbulence, (b) correctly reproduce the effects of the laminar-turbulent transitional behavior that occurs at various phases of the cardiac cycle, and (c) yield good predictions of the near-wall flow behavior in conditions where the universal logarithmic law of the wall is known to be not valid. These requirements are not immediately met by standard models of turbulence that have been developed largely with reference to data from steady, fully turbulent flows in approximate local equilibrium. The purpose of this paper is to report on the development of a turbulence model suited for use in arterial flows. The model is of the two-equation eddy-viscosity variety with dependent variables that are zero-valued at a solid wall and vary linearly with distance from it. The effects of transition are introduced by coupling this model to the local value of the intermittency and obtaining the latter from the solution of a modeled transport equation. Comparisons with measurements obtained in oscillatory transitional flows in circular tubes show that the model produces substantial improvements over existing closures. Further pulsatile-flow predictions, driven by a mean-flow wave form obtained in a diseased human carotid artery, indicate that the intermittency-modified model yields much reduced levels of wall shear stress compared to the original, unmodified model. This result, which is attributed to the rapid growth in the thickness of the viscous sublayer arising from the severe acceleration of systole, argues in favor of the use of the model for the prediction of arterial flows.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Turbulence Model for Pulsatile Arterial Flows
    typeJournal Paper
    journal volume126
    journal issue5
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.1798032
    journal fristpage578
    journal lastpage584
    identifier eissn1528-8951
    keywordsFlow (Dynamics)
    keywordsTurbulence
    keywordsStress
    keywordsReynolds number
    keywordsEquations
    keywordsViscosity
    keywordsEddies (Fluid dynamics)
    keywordsShear (Mechanics) AND Measurement
    treeJournal of Biomechanical Engineering:;2004:;volume( 126 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian