YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Continuum Theory That Couples Creep and Self-Diffusion

    Source: Journal of Applied Mechanics:;2004:;volume( 071 ):;issue: 005::page 646
    Author:
    Z. Suo
    DOI: 10.1115/1.1781176
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In a single-component material, a chemical potential gradient or a wind force drives self-diffusion. If the self-diffusion flux has a divergence, the material deforms. We formulate a continuum theory to be consistent with this kinematic constraint. When the diffusion flux is divergence-free, the theory decouples into Stokes’s theory for creep and Herring’s theory for self-diffusion. A length emerges from the coupled theory to characterize the relative rate of self-diffusion and creep. For a flow in a film driven by a stress gradient, creep dominates in thick films, and self-diffusion dominates in thin films. Depending on the film thickness, either stress-driven creep or stress-driven diffusion prevails to counterbalance electromigration. The transition occurs when the film thickness is comparable to the characteristic length of the material.
    keyword(s): Force , Creep , Diffusion (Physics) , Stress , Atoms , Equations AND Wind ,
    • Download: (104.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Continuum Theory That Couples Creep and Self-Diffusion

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/129450
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorZ. Suo
    date accessioned2017-05-09T00:12:02Z
    date available2017-05-09T00:12:02Z
    date copyrightSeptember, 2004
    date issued2004
    identifier issn0021-8936
    identifier otherJAMCAV-26584#646_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/129450
    description abstractIn a single-component material, a chemical potential gradient or a wind force drives self-diffusion. If the self-diffusion flux has a divergence, the material deforms. We formulate a continuum theory to be consistent with this kinematic constraint. When the diffusion flux is divergence-free, the theory decouples into Stokes’s theory for creep and Herring’s theory for self-diffusion. A length emerges from the coupled theory to characterize the relative rate of self-diffusion and creep. For a flow in a film driven by a stress gradient, creep dominates in thick films, and self-diffusion dominates in thin films. Depending on the film thickness, either stress-driven creep or stress-driven diffusion prevails to counterbalance electromigration. The transition occurs when the film thickness is comparable to the characteristic length of the material.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Continuum Theory That Couples Creep and Self-Diffusion
    typeJournal Paper
    journal volume71
    journal issue5
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.1781176
    journal fristpage646
    journal lastpage651
    identifier eissn1528-9036
    keywordsForce
    keywordsCreep
    keywordsDiffusion (Physics)
    keywordsStress
    keywordsAtoms
    keywordsEquations AND Wind
    treeJournal of Applied Mechanics:;2004:;volume( 071 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian