YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Stochastic Stability of Coupled Oscillators in Resonance: A Perturbation Approach

    Source: Journal of Applied Mechanics:;2004:;volume( 071 ):;issue: 006::page 759
    Author:
    N. Sri Namachchivaya
    ,
    H. J. Van Roessel
    DOI: 10.1115/1.1795813
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A perturbation approach is used to obtain an approximation for the moment Lyapunov exponent of two coupled oscillators with commensurable frequencies driven by a small intensity real noise with dissipation. The generator for the eigenvalue problem associated with the moment Lyapunov exponent is derived without any restriction on the size of pth moment. An orthogonal expansion for the eigenvalue problem based on the Galerkin method is used to derive the stability results in terms of spectral densities. These results can be applied to study the moment and almost-sure stability of structural and mechanical systems subjected to stochastic excitation.
    keyword(s): Resonance , Stability , Eigenvalues , Equations , Frequency , Generators , Noise (Sound) AND Approximation ,
    • Download: (178.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Stochastic Stability of Coupled Oscillators in Resonance: A Perturbation Approach

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/129421
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorN. Sri Namachchivaya
    contributor authorH. J. Van Roessel
    date accessioned2017-05-09T00:11:58Z
    date available2017-05-09T00:11:58Z
    date copyrightNovember, 2004
    date issued2004
    identifier issn0021-8936
    identifier otherJAMCAV-26585#759_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/129421
    description abstractA perturbation approach is used to obtain an approximation for the moment Lyapunov exponent of two coupled oscillators with commensurable frequencies driven by a small intensity real noise with dissipation. The generator for the eigenvalue problem associated with the moment Lyapunov exponent is derived without any restriction on the size of pth moment. An orthogonal expansion for the eigenvalue problem based on the Galerkin method is used to derive the stability results in terms of spectral densities. These results can be applied to study the moment and almost-sure stability of structural and mechanical systems subjected to stochastic excitation.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleStochastic Stability of Coupled Oscillators in Resonance: A Perturbation Approach
    typeJournal Paper
    journal volume71
    journal issue6
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.1795813
    journal fristpage759
    journal lastpage768
    identifier eissn1528-9036
    keywordsResonance
    keywordsStability
    keywordsEigenvalues
    keywordsEquations
    keywordsFrequency
    keywordsGenerators
    keywordsNoise (Sound) AND Approximation
    treeJournal of Applied Mechanics:;2004:;volume( 071 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian