YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Green’s Functions and Boundary Integral Analysis for Exponentially Graded Materials: Heat Conduction

    Source: Journal of Applied Mechanics:;2003:;volume( 070 ):;issue: 004::page 543
    Author:
    L. J. Gray
    ,
    J. D. Richardson
    ,
    G. H. Paulino
    ,
    T. Kaplan
    DOI: 10.1115/1.1485753
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Free space Green’s functions are derived for graded materials in which the thermal conductivity varies exponentially in one coordinate. Closed-form expressions are obtained for the steady-state diffusion equation, in two and three dimensions. The corresponding boundary integral equation formulations for these problems are derived, and the three-dimensional case is solved numerically using a Galerkin approximation. The results of test calculations are in excellent agreement with exact solutions and finite element simulations.
    keyword(s): Heat conduction , Functions , Integral equations , Equations , Approximation , Thermal conductivity , Functionally graded materials , Dimensions AND Steady state ,
    • Download: (149.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Green’s Functions and Boundary Integral Analysis for Exponentially Graded Materials: Heat Conduction

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/127844
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorL. J. Gray
    contributor authorJ. D. Richardson
    contributor authorG. H. Paulino
    contributor authorT. Kaplan
    date accessioned2017-05-09T00:09:19Z
    date available2017-05-09T00:09:19Z
    date copyrightJuly, 2003
    date issued2003
    identifier issn0021-8936
    identifier otherJAMCAV-26561#543_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/127844
    description abstractFree space Green’s functions are derived for graded materials in which the thermal conductivity varies exponentially in one coordinate. Closed-form expressions are obtained for the steady-state diffusion equation, in two and three dimensions. The corresponding boundary integral equation formulations for these problems are derived, and the three-dimensional case is solved numerically using a Galerkin approximation. The results of test calculations are in excellent agreement with exact solutions and finite element simulations.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleGreen’s Functions and Boundary Integral Analysis for Exponentially Graded Materials: Heat Conduction
    typeJournal Paper
    journal volume70
    journal issue4
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.1485753
    journal fristpage543
    journal lastpage549
    identifier eissn1528-9036
    keywordsHeat conduction
    keywordsFunctions
    keywordsIntegral equations
    keywordsEquations
    keywordsApproximation
    keywordsThermal conductivity
    keywordsFunctionally graded materials
    keywordsDimensions AND Steady state
    treeJournal of Applied Mechanics:;2003:;volume( 070 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian