YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Implementation and Validation of a New Soot Model and Application to Aeroengine Combustors

    Source: Journal of Engineering for Gas Turbines and Power:;2002:;volume( 124 ):;issue: 001::page 66
    Author:
    M. Balthasar
    ,
    M. Pfitzner
    ,
    A. Mack
    ,
    F. Mauss
    DOI: 10.1115/1.1377596
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The modeling of soot formation and oxidation under industrially relevant conditions has made significant progress in recent years. Simplified models introducing a small number of transport equations into a CFD code have been used with some success in research configurations simulating a reciprocating diesel engine. Soot formation and oxidation in the turbulent flow is calculated on the basis of a laminar flamelet library model. The gas phase reactions are modeled with a detailed mechanism for the combustion of heptane containing 89 species and 855 reactions developed by Frenklach and Warnatz and revised by Mauss. The soot model is divided into gas phase reactions, the growth of polycyclic aromatic hydrocarbons (PAH) and the processes of particle inception, heterogeneous surface growth, oxidation, and condensation. The first two are modeled within the laminar flamelet chemistry, while the soot model deals with the soot particle processes. The time scales of soot formation are assumed to be much larger than the turbulent time scales. Therefore rates of soot formation are tabulated in the flamelet libraries rather than the soot volume fraction itself. The different rates of soot formation, e.g., particle inception, surface growth, fragmentation, and oxidation, computed on the basis of a detailed soot model, are calculated in the mixture fraction/scalar dissipation rate space and further simplified by fitting them to simple analytical functions. A transport equation for the mean soot mass fraction is solved in the CFD code. The mean rate in this transport equation is closed with the help of presumed probability density functions for the mixture fraction and the scalar dissipation rate. Heat loss due to radiation can be taken into account by including a heat loss parameter in the flamelet calculations describing the change of enthalpy due to radiation, but was not used for the results reported here. The soot model was integrated into an existing commercial CFD code as a post-processing module to existing combustion CFD flow fields and is very robust with high convergence rates. The model is validated with laboratory flame data and using a realistic three-dimensional BMW Rolls-Royce combustor configuration, where test data at high pressure are available. Good agreement between experiment and simulation is achieved for laboratory flames, whereas soot is overpredicted for the aeroengine combustor configuration by 1–2 orders of magnitude.
    keyword(s): Combustion chambers , Soot , Computational fluid dynamics , Scalars , Mixtures , Energy dissipation AND Flow (Dynamics) ,
    • Download: (727.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Implementation and Validation of a New Soot Model and Application to Aeroengine Combustors

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/126805
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorM. Balthasar
    contributor authorM. Pfitzner
    contributor authorA. Mack
    contributor authorF. Mauss
    date accessioned2017-05-09T00:07:31Z
    date available2017-05-09T00:07:31Z
    date copyrightJanuary, 2002
    date issued2002
    identifier issn1528-8919
    identifier otherJETPEZ-26810#66_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/126805
    description abstractThe modeling of soot formation and oxidation under industrially relevant conditions has made significant progress in recent years. Simplified models introducing a small number of transport equations into a CFD code have been used with some success in research configurations simulating a reciprocating diesel engine. Soot formation and oxidation in the turbulent flow is calculated on the basis of a laminar flamelet library model. The gas phase reactions are modeled with a detailed mechanism for the combustion of heptane containing 89 species and 855 reactions developed by Frenklach and Warnatz and revised by Mauss. The soot model is divided into gas phase reactions, the growth of polycyclic aromatic hydrocarbons (PAH) and the processes of particle inception, heterogeneous surface growth, oxidation, and condensation. The first two are modeled within the laminar flamelet chemistry, while the soot model deals with the soot particle processes. The time scales of soot formation are assumed to be much larger than the turbulent time scales. Therefore rates of soot formation are tabulated in the flamelet libraries rather than the soot volume fraction itself. The different rates of soot formation, e.g., particle inception, surface growth, fragmentation, and oxidation, computed on the basis of a detailed soot model, are calculated in the mixture fraction/scalar dissipation rate space and further simplified by fitting them to simple analytical functions. A transport equation for the mean soot mass fraction is solved in the CFD code. The mean rate in this transport equation is closed with the help of presumed probability density functions for the mixture fraction and the scalar dissipation rate. Heat loss due to radiation can be taken into account by including a heat loss parameter in the flamelet calculations describing the change of enthalpy due to radiation, but was not used for the results reported here. The soot model was integrated into an existing commercial CFD code as a post-processing module to existing combustion CFD flow fields and is very robust with high convergence rates. The model is validated with laboratory flame data and using a realistic three-dimensional BMW Rolls-Royce combustor configuration, where test data at high pressure are available. Good agreement between experiment and simulation is achieved for laboratory flames, whereas soot is overpredicted for the aeroengine combustor configuration by 1–2 orders of magnitude.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleImplementation and Validation of a New Soot Model and Application to Aeroengine Combustors
    typeJournal Paper
    journal volume124
    journal issue1
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.1377596
    journal fristpage66
    journal lastpage74
    identifier eissn0742-4795
    keywordsCombustion chambers
    keywordsSoot
    keywordsComputational fluid dynamics
    keywordsScalars
    keywordsMixtures
    keywordsEnergy dissipation AND Flow (Dynamics)
    treeJournal of Engineering for Gas Turbines and Power:;2002:;volume( 124 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian