YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Performance of a Foil-Magnetic Hybrid Bearing

    Source: Journal of Engineering for Gas Turbines and Power:;2002:;volume( 124 ):;issue: 002::page 375
    Author:
    E. E. Swanson
    ,
    H. Heshmat
    ,
    J. Walton
    DOI: 10.1115/1.1417485
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: To meet the advanced bearing needs of modern turbomachinery, a hybrid foil-magnetic hybrid bearing system was designed, fabricated, and tested in a test rig designed to simulate the rotor dynamics of a small gas turbine engine (31 kN to 53 kN thrust class). This oil-free bearing system combines the excellent low and zero-speed capabilities of the magnetic bearing with the high-load capacity and high-speed performance of the compliant foil bearing. An experimental program is described which documents the capabilities of the bearing system for sharing load during operation at up to 30,000 rpm and the foil bearing component’s ability to function as a backup in case of magnetic bearing failure. At an operating speed of 22,000 rpm, loads exceeding 5300 N were carried by the system. This load sharing could be manipulated by an especially designed electronic control algorithm. In all tests, rotor excursions were small and stable. During deliberately staged magnetic bearing malfunctions, the foil bearing proved capable of supporting the rotor during continued operation at full load and speed, as well as allowing a safe rotor coastdown. The hybrid system tripled the load capacity of the magnetic bearing alone and can offer a significant reduction in total bearing weight compared to a comparable magnetic bearing.
    keyword(s): Stress , Bearings AND Magnetic bearings ,
    • Download: (456.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Performance of a Foil-Magnetic Hybrid Bearing

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/126788
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorE. E. Swanson
    contributor authorH. Heshmat
    contributor authorJ. Walton
    date accessioned2017-05-09T00:07:29Z
    date available2017-05-09T00:07:29Z
    date copyrightApril, 2002
    date issued2002
    identifier issn1528-8919
    identifier otherJETPEZ-26812#375_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/126788
    description abstractTo meet the advanced bearing needs of modern turbomachinery, a hybrid foil-magnetic hybrid bearing system was designed, fabricated, and tested in a test rig designed to simulate the rotor dynamics of a small gas turbine engine (31 kN to 53 kN thrust class). This oil-free bearing system combines the excellent low and zero-speed capabilities of the magnetic bearing with the high-load capacity and high-speed performance of the compliant foil bearing. An experimental program is described which documents the capabilities of the bearing system for sharing load during operation at up to 30,000 rpm and the foil bearing component’s ability to function as a backup in case of magnetic bearing failure. At an operating speed of 22,000 rpm, loads exceeding 5300 N were carried by the system. This load sharing could be manipulated by an especially designed electronic control algorithm. In all tests, rotor excursions were small and stable. During deliberately staged magnetic bearing malfunctions, the foil bearing proved capable of supporting the rotor during continued operation at full load and speed, as well as allowing a safe rotor coastdown. The hybrid system tripled the load capacity of the magnetic bearing alone and can offer a significant reduction in total bearing weight compared to a comparable magnetic bearing.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePerformance of a Foil-Magnetic Hybrid Bearing
    typeJournal Paper
    journal volume124
    journal issue2
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.1417485
    journal fristpage375
    journal lastpage382
    identifier eissn0742-4795
    keywordsStress
    keywordsBearings AND Magnetic bearings
    treeJournal of Engineering for Gas Turbines and Power:;2002:;volume( 124 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian