YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Some Properties of J-Integral in Plane Elasticity

    Source: Journal of Applied Mechanics:;2002:;volume( 069 ):;issue: 002::page 195
    Author:
    Y. Z. Chen
    ,
    K. Y. Lee
    DOI: 10.1115/1.1432663
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Some properties of the J-integral in plane elasticity are analyzed. An infinite plate with any number of inclusions, cracks, and any loading conditions is considered. In addition to the physical field, a derivative field is defined and introduced. Using the Betti’s reciprocal theorem for the physical and derivative fields, two new path-independent D1 and D2 are obtained. It is found that the values of Jk(k=1,2) on a large circle are equal to the values of Dk(k=1,2) on the same circle. Using this property and the complex variable function method, the values of Jk(k=1,2) on a large circle is obtained. It is proved that the vector Jk(k=1,2) is a gradient of a scalar function P(x,y).
    keyword(s): Elasticity , Stress , Fracture (Materials) , Theorems (Mathematics) , Scalar functions AND Gradients ,
    • Download: (113.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Some Properties of J-Integral in Plane Elasticity

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/126298
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorY. Z. Chen
    contributor authorK. Y. Lee
    date accessioned2017-05-09T00:06:40Z
    date available2017-05-09T00:06:40Z
    date copyrightMarch, 2002
    date issued2002
    identifier issn0021-8936
    identifier otherJAMCAV-26532#195_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/126298
    description abstractSome properties of the J-integral in plane elasticity are analyzed. An infinite plate with any number of inclusions, cracks, and any loading conditions is considered. In addition to the physical field, a derivative field is defined and introduced. Using the Betti’s reciprocal theorem for the physical and derivative fields, two new path-independent D1 and D2 are obtained. It is found that the values of Jk(k=1,2) on a large circle are equal to the values of Dk(k=1,2) on the same circle. Using this property and the complex variable function method, the values of Jk(k=1,2) on a large circle is obtained. It is proved that the vector Jk(k=1,2) is a gradient of a scalar function P(x,y).
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSome Properties of J-Integral in Plane Elasticity
    typeJournal Paper
    journal volume69
    journal issue2
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.1432663
    journal fristpage195
    journal lastpage198
    identifier eissn1528-9036
    keywordsElasticity
    keywordsStress
    keywordsFracture (Materials)
    keywordsTheorems (Mathematics)
    keywordsScalar functions AND Gradients
    treeJournal of Applied Mechanics:;2002:;volume( 069 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian