YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Finite Element Investigation of Quasi-Static Crack Growth in Functionally Graded Materials Using a Novel Cohesive Zone Fracture Model

    Source: Journal of Applied Mechanics:;2002:;volume( 069 ):;issue: 003::page 370
    Author:
    Z.-H. Jin
    ,
    G. H. Paulino
    ,
    R. H. Dodds
    DOI: 10.1115/1.1467092
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This work studies mode I crack growth in ceramic/metal functionally graded materials (FGMs) using three-dimensional interface-cohesive elements based upon a new phenomenological cohesive fracture model. The local separation energies and peak tractions for the metal and ceramic constituents govern the cohesive fracture process. The model formulation introduces two cohesive gradation parameters to control the transition of fracture behavior between the constituents. Numerical values of volume fractions for the constituents specified at nodes of the finite element model set the spatial gradation of material properties with standard isoparametric interpolations inside interface elements and background solid elements to define pointwise material property values. The paper describes applications of the cohesive fracture model and computational scheme to analyze crack growth in compact tension, C(T), and single-edge notch bend, SE(B), specimens with material properties characteristic of a TiB/Ti FGM. Young’s modulus and Poisson’s ratio of the background solid material are determined using a self-consistent method (the background material remains linear elastic). The numerical studies demonstrate that the load to cause crack extension in the FGM compares to that for the metal and that crack growth response varies strongly with values of the cohesive gradation parameter for the metal. These results suggest the potential to calibrate the value of this parameter by matching the predicted and measured crack growth response in standard fracture mechanics specimens.
    keyword(s): Metals , Fracture (Process) , Functionally graded materials , Ceramics AND Finite element analysis ,
    • Download: (186.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Finite Element Investigation of Quasi-Static Crack Growth in Functionally Graded Materials Using a Novel Cohesive Zone Fracture Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/126295
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorZ.-H. Jin
    contributor authorG. H. Paulino
    contributor authorR. H. Dodds
    date accessioned2017-05-09T00:06:40Z
    date available2017-05-09T00:06:40Z
    date copyrightMay, 2002
    date issued2002
    identifier issn0021-8936
    identifier otherJAMCAV-26534#370_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/126295
    description abstractThis work studies mode I crack growth in ceramic/metal functionally graded materials (FGMs) using three-dimensional interface-cohesive elements based upon a new phenomenological cohesive fracture model. The local separation energies and peak tractions for the metal and ceramic constituents govern the cohesive fracture process. The model formulation introduces two cohesive gradation parameters to control the transition of fracture behavior between the constituents. Numerical values of volume fractions for the constituents specified at nodes of the finite element model set the spatial gradation of material properties with standard isoparametric interpolations inside interface elements and background solid elements to define pointwise material property values. The paper describes applications of the cohesive fracture model and computational scheme to analyze crack growth in compact tension, C(T), and single-edge notch bend, SE(B), specimens with material properties characteristic of a TiB/Ti FGM. Young’s modulus and Poisson’s ratio of the background solid material are determined using a self-consistent method (the background material remains linear elastic). The numerical studies demonstrate that the load to cause crack extension in the FGM compares to that for the metal and that crack growth response varies strongly with values of the cohesive gradation parameter for the metal. These results suggest the potential to calibrate the value of this parameter by matching the predicted and measured crack growth response in standard fracture mechanics specimens.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFinite Element Investigation of Quasi-Static Crack Growth in Functionally Graded Materials Using a Novel Cohesive Zone Fracture Model
    typeJournal Paper
    journal volume69
    journal issue3
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.1467092
    journal fristpage370
    journal lastpage379
    identifier eissn1528-9036
    keywordsMetals
    keywordsFracture (Process)
    keywordsFunctionally graded materials
    keywordsCeramics AND Finite element analysis
    treeJournal of Applied Mechanics:;2002:;volume( 069 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian