Laminar Burning Velocity of Methane–Air–Diluent MixturesSource: Journal of Engineering for Gas Turbines and Power:;2001:;volume( 123 ):;issue: 001::page 190DOI: 10.1115/1.1339984Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: An experimental facility for measuring burning velocity has been designed and built. It consists of a spherical constant volume vessel equipped with a dynamic pressure transducer, ionization probes, thermocouple, and data acquisition system. The constant volume combustion vessel allows for the determination of the burning velocity over a wide range of temperatures and pressures from a single run. A new model has been developed to calculate the laminar burning velocity using the pressure data of the combustion process. The model solves conservation of mass and energy equations to determine the mass fraction of the burned gas as the combustion process proceeds. This new method allows for temperature gradients in the burned gas and the effects of flame stretch on burning velocity. Exact calculations of the burned gas properties are determined by using a chemical equilibrium code with gas properties from the JANAF Tables. Numerical differentiation of the mass fraction burned determines the rate of the mass fraction burned, from which the laminar burning velocity is calculated. Using this method, the laminar burning velocities of methane–air–diluent mixtures have been measured. A correlation has been developed for the range of pressures from 0.75 to 70 atm, unburned gas temperatures from 298 to 550 K, fuel/air equivalence ratios from 0.8 to 1.2, and diluent addition from 0 to 15 percent by volume.
keyword(s): Pressure , Temperature , Combustion , Flames , Methane , Mixtures , Vessels , Diluents AND Fuels ,
|
Show full item record
contributor author | M. Elia | |
contributor author | M. Ulinski | |
contributor author | M. Metghalchi | |
date accessioned | 2017-05-09T00:04:56Z | |
date available | 2017-05-09T00:04:56Z | |
date copyright | January, 2001 | |
date issued | 2001 | |
identifier issn | 1528-8919 | |
identifier other | JETPEZ-26802#190_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/125255 | |
description abstract | An experimental facility for measuring burning velocity has been designed and built. It consists of a spherical constant volume vessel equipped with a dynamic pressure transducer, ionization probes, thermocouple, and data acquisition system. The constant volume combustion vessel allows for the determination of the burning velocity over a wide range of temperatures and pressures from a single run. A new model has been developed to calculate the laminar burning velocity using the pressure data of the combustion process. The model solves conservation of mass and energy equations to determine the mass fraction of the burned gas as the combustion process proceeds. This new method allows for temperature gradients in the burned gas and the effects of flame stretch on burning velocity. Exact calculations of the burned gas properties are determined by using a chemical equilibrium code with gas properties from the JANAF Tables. Numerical differentiation of the mass fraction burned determines the rate of the mass fraction burned, from which the laminar burning velocity is calculated. Using this method, the laminar burning velocities of methane–air–diluent mixtures have been measured. A correlation has been developed for the range of pressures from 0.75 to 70 atm, unburned gas temperatures from 298 to 550 K, fuel/air equivalence ratios from 0.8 to 1.2, and diluent addition from 0 to 15 percent by volume. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Laminar Burning Velocity of Methane–Air–Diluent Mixtures | |
type | Journal Paper | |
journal volume | 123 | |
journal issue | 1 | |
journal title | Journal of Engineering for Gas Turbines and Power | |
identifier doi | 10.1115/1.1339984 | |
journal fristpage | 190 | |
journal lastpage | 196 | |
identifier eissn | 0742-4795 | |
keywords | Pressure | |
keywords | Temperature | |
keywords | Combustion | |
keywords | Flames | |
keywords | Methane | |
keywords | Mixtures | |
keywords | Vessels | |
keywords | Diluents AND Fuels | |
tree | Journal of Engineering for Gas Turbines and Power:;2001:;volume( 123 ):;issue: 001 | |
contenttype | Fulltext |