YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Reduced NOx Diffusion Flame Combustors for Industrial Gas Turbines

    Source: Journal of Engineering for Gas Turbines and Power:;2001:;volume( 123 ):;issue: 004::page 757
    Author:
    A. S. Feitelberg
    ,
    R. A. Elliott
    ,
    R. E. Pavri
    ,
    V. E. Tangirala
    ,
    R. B. Schiefer
    DOI: 10.1115/1.1376722
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper describes reduced NOx diffusion flame combustors that have been developed for both simple cycle and regenerative cycle MS3002 and MS5002 gas turbines. Laboratory tests have shown that when firing with natural gas, without water or steam injection, NOx emissions from the new combustors are about 40 percent lower than NOx emissions from the standard combustors. CO emissions are virtually unchanged at base load, but increase at part load conditions. Commercial demonstration tests have confirmed the laboratory results. The standard combustors on both the MS3002 and MS5002 gas turbine are cylindrical cans, approximately 10.5 inches (27 cm) in diameter. A single fuel nozzle is centered at the inlet to each can and produces a swirl stabilized diffusion flame. The walls of the cans are louvered for cooling, and contain an array of mixing and dilution holes that provide the air needed to complete combustion and dilute the burned gas to the desired turbine inlet temperature. The MS3002 turbine is equipped with six combustor cans, while the MS5002 turbine is equipped with twelve combustors. The new, reduced NOx emissions combustors (referred to as a “lean head end,” or LHE, combustors) retain all of the key features of the conventional combustors; the only major difference is the arrangement of the mixing and dilution holes in the cylindrical combustor cans. By optimizing the number, diameter, and location of these holes, NOx emissions can be reduced considerably. Minor changes are also sometimes made to the combustor cap. The materials of construction, pressure drop, and fuel nozzle are all unchanged. The differences in NOx emissions between the standard and LHE combustors, as well as the variations in NOx emissions with firing temperature, are well correlated using turbulent flame length arguments. Details of this correlation are presented.
    keyword(s): Temperature , Combustion chambers , Turbines , Cycles , Emissions , Diffusion flames , Fuels AND Nozzles ,
    • Download: (297.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Reduced NOx Diffusion Flame Combustors for Industrial Gas Turbines

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/125131
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorA. S. Feitelberg
    contributor authorR. A. Elliott
    contributor authorR. E. Pavri
    contributor authorV. E. Tangirala
    contributor authorR. B. Schiefer
    date accessioned2017-05-09T00:04:43Z
    date available2017-05-09T00:04:43Z
    date copyrightOctober, 2001
    date issued2001
    identifier issn1528-8919
    identifier otherJETPEZ-26807#757_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/125131
    description abstractThis paper describes reduced NOx diffusion flame combustors that have been developed for both simple cycle and regenerative cycle MS3002 and MS5002 gas turbines. Laboratory tests have shown that when firing with natural gas, without water or steam injection, NOx emissions from the new combustors are about 40 percent lower than NOx emissions from the standard combustors. CO emissions are virtually unchanged at base load, but increase at part load conditions. Commercial demonstration tests have confirmed the laboratory results. The standard combustors on both the MS3002 and MS5002 gas turbine are cylindrical cans, approximately 10.5 inches (27 cm) in diameter. A single fuel nozzle is centered at the inlet to each can and produces a swirl stabilized diffusion flame. The walls of the cans are louvered for cooling, and contain an array of mixing and dilution holes that provide the air needed to complete combustion and dilute the burned gas to the desired turbine inlet temperature. The MS3002 turbine is equipped with six combustor cans, while the MS5002 turbine is equipped with twelve combustors. The new, reduced NOx emissions combustors (referred to as a “lean head end,” or LHE, combustors) retain all of the key features of the conventional combustors; the only major difference is the arrangement of the mixing and dilution holes in the cylindrical combustor cans. By optimizing the number, diameter, and location of these holes, NOx emissions can be reduced considerably. Minor changes are also sometimes made to the combustor cap. The materials of construction, pressure drop, and fuel nozzle are all unchanged. The differences in NOx emissions between the standard and LHE combustors, as well as the variations in NOx emissions with firing temperature, are well correlated using turbulent flame length arguments. Details of this correlation are presented.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleReduced NOx Diffusion Flame Combustors for Industrial Gas Turbines
    typeJournal Paper
    journal volume123
    journal issue4
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.1376722
    journal fristpage757
    journal lastpage765
    identifier eissn0742-4795
    keywordsTemperature
    keywordsCombustion chambers
    keywordsTurbines
    keywordsCycles
    keywordsEmissions
    keywordsDiffusion flames
    keywordsFuels AND Nozzles
    treeJournal of Engineering for Gas Turbines and Power:;2001:;volume( 123 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian