YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Flow Past Rotating Cylinders: Effect of Eccentricity

    Source: Journal of Applied Mechanics:;2001:;volume( 068 ):;issue: 004::page 543
    Author:
    S. Mittal
    DOI: 10.1115/1.1380679
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Computational results are presented for flows past a translating and rotating circular cylinder. A stabilized finite element method is utilized to solve the incompressible Navier-Stokes equations in the primitive variables formulation. To validate the formulation and its implementation certain cases, for which the flow visualization and computational results have been reported by other researchers, are computed. Results are presented for Re=5, 200 and 3800 and rotation rate, (ratio of surface speed of cylinder to the freestream speed of flow), of 5. For all these cases the flow reaches a steady state. The values of lift coefficient observed for these flows exceed the limit on the maximum value of lift coefficient suggested by Goldstein based on intuitive arguments by Prandtl. These observations are in line with measurements reported, earlier, by other researchers via laboratory experiments. To investigate the stability of the computed steady-state solution, receptivity studies involving an eccentrically rotating cylinder are carried out. Computations are presented for flow past a rotating cylinder with wobble; the center of rotation of the cylinder does not match its geometric center. These computations are also important from the point of view that in a real situation it is almost certain that the rotating cylinder will be associated with a certain degree of wobble. In such cases the flow is unsteady and reaches a temporally periodic state. However, the mean values of the aerodynamic coefficients and the basic flow structure are still quite comparable to the case without any wobble. In this sense, it is found that the two-dimensional solution is stable to purely two-dimensional disturbances.
    keyword(s): Rotation , Flow (Dynamics) , Computation AND Cylinders ,
    • Download: (710.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Flow Past Rotating Cylinders: Effect of Eccentricity

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/124673
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorS. Mittal
    date accessioned2017-05-09T00:03:59Z
    date available2017-05-09T00:03:59Z
    date copyrightJuly, 2001
    date issued2001
    identifier issn0021-8936
    identifier otherJAMCAV-26518#543_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/124673
    description abstractComputational results are presented for flows past a translating and rotating circular cylinder. A stabilized finite element method is utilized to solve the incompressible Navier-Stokes equations in the primitive variables formulation. To validate the formulation and its implementation certain cases, for which the flow visualization and computational results have been reported by other researchers, are computed. Results are presented for Re=5, 200 and 3800 and rotation rate, (ratio of surface speed of cylinder to the freestream speed of flow), of 5. For all these cases the flow reaches a steady state. The values of lift coefficient observed for these flows exceed the limit on the maximum value of lift coefficient suggested by Goldstein based on intuitive arguments by Prandtl. These observations are in line with measurements reported, earlier, by other researchers via laboratory experiments. To investigate the stability of the computed steady-state solution, receptivity studies involving an eccentrically rotating cylinder are carried out. Computations are presented for flow past a rotating cylinder with wobble; the center of rotation of the cylinder does not match its geometric center. These computations are also important from the point of view that in a real situation it is almost certain that the rotating cylinder will be associated with a certain degree of wobble. In such cases the flow is unsteady and reaches a temporally periodic state. However, the mean values of the aerodynamic coefficients and the basic flow structure are still quite comparable to the case without any wobble. In this sense, it is found that the two-dimensional solution is stable to purely two-dimensional disturbances.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFlow Past Rotating Cylinders: Effect of Eccentricity
    typeJournal Paper
    journal volume68
    journal issue4
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.1380679
    journal fristpage543
    journal lastpage552
    identifier eissn1528-9036
    keywordsRotation
    keywordsFlow (Dynamics)
    keywordsComputation AND Cylinders
    treeJournal of Applied Mechanics:;2001:;volume( 068 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian