YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    End Thermal Stresses in a Long Circular Rod

    Source: Journal of Applied Mechanics:;1968:;volume( 035 ):;issue: 002::page 267
    Author:
    W. H. Chu
    ,
    F. T. Dodge
    DOI: 10.1115/1.3601190
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The title problem is solved by the method of collocation utilizing complex nonorthogonal characteristic functions. It is shown that the characteristic values can be obtained by repeated linear interpolation without much difficulty. Ten roots are given for the case of Poisson’s ratio equaling 0.3. For large temperature gradients, an example is given which shows high end stresses. The general solution due to the end effect dies down at the rate of exp (–2.722 z/a) or faster, but its magnitude depends on the steepness of the temperature gradient. This paper also shows that the Saint-Venant principle may not always be sufficient, that the end stress could be critical, and that, therefore, it should be calculated.
    keyword(s): Thermal stresses , Temperature gradients , Stress , Poisson ratio , Functions , Interpolation AND Saint-Venant's principle ,
    • Download: (2.079Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      End Thermal Stresses in a Long Circular Rod

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/124645
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorW. H. Chu
    contributor authorF. T. Dodge
    date accessioned2017-05-09T00:03:56Z
    date available2017-05-09T00:03:56Z
    date copyrightJune, 1968
    date issued1968
    identifier issn0021-8936
    identifier otherJAMCAV-25871#267_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/124645
    description abstractThe title problem is solved by the method of collocation utilizing complex nonorthogonal characteristic functions. It is shown that the characteristic values can be obtained by repeated linear interpolation without much difficulty. Ten roots are given for the case of Poisson’s ratio equaling 0.3. For large temperature gradients, an example is given which shows high end stresses. The general solution due to the end effect dies down at the rate of exp (–2.722 z/a) or faster, but its magnitude depends on the steepness of the temperature gradient. This paper also shows that the Saint-Venant principle may not always be sufficient, that the end stress could be critical, and that, therefore, it should be calculated.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEnd Thermal Stresses in a Long Circular Rod
    typeJournal Paper
    journal volume35
    journal issue2
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.3601190
    journal fristpage267
    journal lastpage273
    identifier eissn1528-9036
    keywordsThermal stresses
    keywordsTemperature gradients
    keywordsStress
    keywordsPoisson ratio
    keywordsFunctions
    keywordsInterpolation AND Saint-Venant's principle
    treeJournal of Applied Mechanics:;1968:;volume( 035 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian