Aerodynamic Characteristics of Pressure-Pad Air BarsSource: Journal of Applied Mechanics:;2000:;volume( 067 ):;issue: 001::page 177DOI: 10.1115/1.321161Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: Air-flotation ovens are widely used for noncontact support and drying of coated paper and plastic films (generically called webs). The main components in typical air-flotation ovens are air bars which have slot nozzles or holes through which hot air jets are ejected. Problems in air-flotation drying techniques include sideward motion of the web, web flutter, and contact between the web and air bars. The key to analyzing these problems is to determine the aerodynamic forces on the web. This paper discusses the aerodynamic forces generated by pressure-pad-type air bars, each of which has two slot nozzles. Ground-effect theories, which were originally developed for the design of hovercraft, are re-examined. The theories are compared with the measured values of the aerodynamic forces for typical air bars. It is shown that ground effect theories can be applied to pressure-pad-type air bars if we properly define the equivalent values of the ground effect variables, which include thickness of the air jet, flotation height, ejection angle of the air jet, and the effective total pressure of the air jet. [S0021-8936(00)02801-4]
keyword(s): Pressure , Air jets , Nozzles AND Thickness ,
|
Collections
Show full item record
contributor author | Y. B. Chang | |
contributor author | P. M. Moretti | |
date accessioned | 2017-05-09T00:01:47Z | |
date available | 2017-05-09T00:01:47Z | |
date copyright | March, 2000 | |
date issued | 2000 | |
identifier issn | 0021-8936 | |
identifier other | JAMCAV-26490#177_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/123303 | |
description abstract | Air-flotation ovens are widely used for noncontact support and drying of coated paper and plastic films (generically called webs). The main components in typical air-flotation ovens are air bars which have slot nozzles or holes through which hot air jets are ejected. Problems in air-flotation drying techniques include sideward motion of the web, web flutter, and contact between the web and air bars. The key to analyzing these problems is to determine the aerodynamic forces on the web. This paper discusses the aerodynamic forces generated by pressure-pad-type air bars, each of which has two slot nozzles. Ground-effect theories, which were originally developed for the design of hovercraft, are re-examined. The theories are compared with the measured values of the aerodynamic forces for typical air bars. It is shown that ground effect theories can be applied to pressure-pad-type air bars if we properly define the equivalent values of the ground effect variables, which include thickness of the air jet, flotation height, ejection angle of the air jet, and the effective total pressure of the air jet. [S0021-8936(00)02801-4] | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Aerodynamic Characteristics of Pressure-Pad Air Bars | |
type | Journal Paper | |
journal volume | 67 | |
journal issue | 1 | |
journal title | Journal of Applied Mechanics | |
identifier doi | 10.1115/1.321161 | |
journal fristpage | 177 | |
journal lastpage | 182 | |
identifier eissn | 1528-9036 | |
keywords | Pressure | |
keywords | Air jets | |
keywords | Nozzles AND Thickness | |
tree | Journal of Applied Mechanics:;2000:;volume( 067 ):;issue: 001 | |
contenttype | Fulltext |