YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Solution of the Moving Mass Problem Using Complex Eigenfunction Expansions

    Source: Journal of Applied Mechanics:;2000:;volume( 067 ):;issue: 004::page 823
    Author:
    K.-Y. Lee
    ,
    A. A. Renshaw
    DOI: 10.1115/1.1325010
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A new solution technique is developed for solving the moving mass problem for nonconservative, linear, distributed parameter systems using complex eigenfunction expansions. Traditional Galerkin analysis of this problem using complex eigenfunctions fails in the limit of large numbers of trial functions because complex eigenfunctions are not linearly independent. This linear dependence problem is circumvented by applying a modal constraint on the velocity of the distributed parameter system (Renshaw, A. A., 1997, J. Appl. Mech., 64 , pp. 238–240). This constraint is valid for all complete sets of eigenfunctions but must be applied with care for finite dimensional approximations of concentrated loads such as found in the moving mass problem. Numerical results indicate that the proposed method is competitive with Galerkin’s method with real trial functions in terms of accuracy and rate of convergence. [S0021-8936(00)00604-8]
    keyword(s): Eigenfunctions , String , Functions , Stress AND Distributed parameter systems ,
    • Download: (98.67Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Solution of the Moving Mass Problem Using Complex Eigenfunction Expansions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/123220
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorK.-Y. Lee
    contributor authorA. A. Renshaw
    date accessioned2017-05-09T00:01:40Z
    date available2017-05-09T00:01:40Z
    date copyrightDecember, 2000
    date issued2000
    identifier issn0021-8936
    identifier otherJAMCAV-26501#823_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/123220
    description abstractA new solution technique is developed for solving the moving mass problem for nonconservative, linear, distributed parameter systems using complex eigenfunction expansions. Traditional Galerkin analysis of this problem using complex eigenfunctions fails in the limit of large numbers of trial functions because complex eigenfunctions are not linearly independent. This linear dependence problem is circumvented by applying a modal constraint on the velocity of the distributed parameter system (Renshaw, A. A., 1997, J. Appl. Mech., 64 , pp. 238–240). This constraint is valid for all complete sets of eigenfunctions but must be applied with care for finite dimensional approximations of concentrated loads such as found in the moving mass problem. Numerical results indicate that the proposed method is competitive with Galerkin’s method with real trial functions in terms of accuracy and rate of convergence. [S0021-8936(00)00604-8]
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSolution of the Moving Mass Problem Using Complex Eigenfunction Expansions
    typeJournal Paper
    journal volume67
    journal issue4
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.1325010
    journal fristpage823
    journal lastpage827
    identifier eissn1528-9036
    keywordsEigenfunctions
    keywordsString
    keywordsFunctions
    keywordsStress AND Distributed parameter systems
    treeJournal of Applied Mechanics:;2000:;volume( 067 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian