Show simple item record

contributor authorS. M. Yang
contributor authorG. S. Lee
date accessioned2017-05-08T23:59:09Z
date available2017-05-08T23:59:09Z
date copyrightSeptember, 1999
date issued1999
identifier issn0022-0434
identifier otherJDSMAA-26257#560_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/121883
description abstractOne of the major difficulties in neural network applications is the selection of the parameters in network configuration and the coefficients in learning rule for fast convergence. This paper develops a network design by combining the Taguchi method and the back-propagation network with an adaptive learning rate for minimum training time and effective vibration suppression. Analyses and experiments show that the optimal design parameters can be determined in a systematic way thereby avoiding the lengthy trial-and-error.
publisherThe American Society of Mechanical Engineers (ASME)
titleNeural Network Design by Using Taguchi Method
typeJournal Paper
journal volume121
journal issue3
journal titleJournal of Dynamic Systems, Measurement, and Control
identifier doi10.1115/1.2802515
journal fristpage560
journal lastpage563
identifier eissn1528-9028
keywordsDesign
keywordsArtificial neural networks
keywordsTaguchi methods
keywordsNetworks
keywordsErrors AND Vibration suppression
treeJournal of Dynamic Systems, Measurement, and Control:;1999:;volume( 121 ):;issue: 003
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record