YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Lyapunov Exponents and Stochastic Stability of Quasi-Integrable-Hamiltonian Systems

    Source: Journal of Applied Mechanics:;1999:;volume( 066 ):;issue: 001::page 211
    Author:
    W. Q. Zhu
    ,
    Z. L. Huang
    DOI: 10.1115/1.2789148
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The averaged equations of integrable and nonresonant Hamiltonian systems of multi-degree-of-freedom subject to light damping and real noise excitations of small intensities are first derived. Then, the expression for the largest Lyapunov exponent of the square root of the Hamiltonian is formulated by generalizing the well-known procedure due to Khasminskii to the averaged equations, from which the stochastic stability and bifurcation phenomena of the original systems can be determined approximately. Linear and nonlinear stochastic systems of two degrees-of-freedom are investigated to illustrate the application of the proposed combination approach of the stochastic averaging method for quasi-integrable Hamiltonian systems and Khasminskii’s procedure.
    keyword(s): Stability , Equations , Stochastic systems , Noise (Sound) , Degrees of freedom , Damping AND Bifurcation ,
    • Download: (666.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Lyapunov Exponents and Stochastic Stability of Quasi-Integrable-Hamiltonian Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/121741
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorW. Q. Zhu
    contributor authorZ. L. Huang
    date accessioned2017-05-08T23:58:56Z
    date available2017-05-08T23:58:56Z
    date copyrightMarch, 1999
    date issued1999
    identifier issn0021-8936
    identifier otherJAMCAV-26464#211_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/121741
    description abstractThe averaged equations of integrable and nonresonant Hamiltonian systems of multi-degree-of-freedom subject to light damping and real noise excitations of small intensities are first derived. Then, the expression for the largest Lyapunov exponent of the square root of the Hamiltonian is formulated by generalizing the well-known procedure due to Khasminskii to the averaged equations, from which the stochastic stability and bifurcation phenomena of the original systems can be determined approximately. Linear and nonlinear stochastic systems of two degrees-of-freedom are investigated to illustrate the application of the proposed combination approach of the stochastic averaging method for quasi-integrable Hamiltonian systems and Khasminskii’s procedure.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleLyapunov Exponents and Stochastic Stability of Quasi-Integrable-Hamiltonian Systems
    typeJournal Paper
    journal volume66
    journal issue1
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.2789148
    journal fristpage211
    journal lastpage217
    identifier eissn1528-9036
    keywordsStability
    keywordsEquations
    keywordsStochastic systems
    keywordsNoise (Sound)
    keywordsDegrees of freedom
    keywordsDamping AND Bifurcation
    treeJournal of Applied Mechanics:;1999:;volume( 066 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian