YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nonlinear Vibration of Parametrically Excited Viscoelastic Moving Belts, Part II: Stability Analysis

    Source: Journal of Applied Mechanics:;1999:;volume( 066 ):;issue: 002::page 403
    Author:
    L. Zhang
    ,
    J. W. Zu
    DOI: 10.1115/1.2791063
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The amplitude and existence conditions of nontrivial limit cycles are derived in the companion paper by the use of the method of multiple scales. In this paper, the stability for parametrically excited viscoelastic moving belts is studied. Stability boundaries of the trivial limit cycle for general summation parametric resonance are obtained. The Routh-Hurwitz criterion is used to investigate the stability of nontrivial limit cycles. Closed-form expressions are found for the stability of nontrivial limit cycles of general summation parametric resonance. It is shown that the first limit cycle is always stable while the second limit cycle is always unstable for the viscoelastic moving belts. The effects of viscoelastic parameters, excitation frequencies, excitation amplitudes, and axial moving speeds on stability boundaries are discussed.
    keyword(s): Stability , Nonlinear vibration , Belts , Cycles , Resonance AND Frequency ,
    • Download: (530.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nonlinear Vibration of Parametrically Excited Viscoelastic Moving Belts, Part II: Stability Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/121683
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorL. Zhang
    contributor authorJ. W. Zu
    date accessioned2017-05-08T23:58:51Z
    date available2017-05-08T23:58:51Z
    date copyrightJune, 1999
    date issued1999
    identifier issn0021-8936
    identifier otherJAMCAV-26470#403_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/121683
    description abstractThe amplitude and existence conditions of nontrivial limit cycles are derived in the companion paper by the use of the method of multiple scales. In this paper, the stability for parametrically excited viscoelastic moving belts is studied. Stability boundaries of the trivial limit cycle for general summation parametric resonance are obtained. The Routh-Hurwitz criterion is used to investigate the stability of nontrivial limit cycles. Closed-form expressions are found for the stability of nontrivial limit cycles of general summation parametric resonance. It is shown that the first limit cycle is always stable while the second limit cycle is always unstable for the viscoelastic moving belts. The effects of viscoelastic parameters, excitation frequencies, excitation amplitudes, and axial moving speeds on stability boundaries are discussed.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNonlinear Vibration of Parametrically Excited Viscoelastic Moving Belts, Part II: Stability Analysis
    typeJournal Paper
    journal volume66
    journal issue2
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.2791063
    journal fristpage403
    journal lastpage409
    identifier eissn1528-9036
    keywordsStability
    keywordsNonlinear vibration
    keywordsBelts
    keywordsCycles
    keywordsResonance AND Frequency
    treeJournal of Applied Mechanics:;1999:;volume( 066 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian