YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Estimation of Energy Savings for Building Retrofits Using Neural Networks

    Source: Journal of Solar Energy Engineering:;1998:;volume( 120 ):;issue: 003::page 211
    Author:
    M. Krarti
    ,
    D. Cohen
    ,
    P. Curtiss
    ,
    J. F. Kreider
    DOI: 10.1115/1.2888071
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper overviews some applications of neural networks (NNs) to estimate energy and demand savings from retrofits of commercial buildings. First, a brief background information on NNs is provided. Then, three specific case studies are described to illustrate how and when NNs can be used successfully to determine energy savings due to the implementation of various energy conservation measures in existing commercial buildings.
    keyword(s): Artificial neural networks , Structures AND Energy conservation ,
    • Download: (642.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Estimation of Energy Savings for Building Retrofits Using Neural Networks

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/121083
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorM. Krarti
    contributor authorD. Cohen
    contributor authorP. Curtiss
    contributor authorJ. F. Kreider
    date accessioned2017-05-08T23:57:45Z
    date available2017-05-08T23:57:45Z
    date copyrightAugust, 1998
    date issued1998
    identifier issn0199-6231
    identifier otherJSEEDO-28279#211_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/121083
    description abstractThis paper overviews some applications of neural networks (NNs) to estimate energy and demand savings from retrofits of commercial buildings. First, a brief background information on NNs is provided. Then, three specific case studies are described to illustrate how and when NNs can be used successfully to determine energy savings due to the implementation of various energy conservation measures in existing commercial buildings.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEstimation of Energy Savings for Building Retrofits Using Neural Networks
    typeJournal Paper
    journal volume120
    journal issue3
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.2888071
    journal fristpage211
    journal lastpage216
    identifier eissn1528-8986
    keywordsArtificial neural networks
    keywordsStructures AND Energy conservation
    treeJournal of Solar Energy Engineering:;1998:;volume( 120 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian