Show simple item record

contributor authorS. Sathe
contributor authorK. M. Kelkar
contributor authorC. Tai
contributor authorS. V. Patankar
contributor authorC. Lamb
contributor authorK. C. Karki
date accessioned2017-05-08T23:53:14Z
date available2017-05-08T23:53:14Z
date copyrightMarch, 1997
date issued1997
identifier issn1528-9044
identifier otherJEPAE4-26158#58_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/118554
description abstractForced flow of air over extended surfaces offers a simple, reliable, and effective heat removal mechanism and is often employed in electronic equipment. The IBM 4381 heat sink, used in production IBM computers, utilizes this cooling technique. This heat sink consists of a ceramic substrate on which fins made of an aluminum-copper alloy are arranged in a regular array. Cooling air enters the fin array from a nozzle. Extensive experiments have been carried out to characterize the performance of this heat sink at the Advanced Thermal Engineering Laboratory at IBM Endicott. This paper presents computational analysis of the three-dimensional flow and heat transfer in this device for two different air flow rates through the nozzle. The heat dissipated by the electronic components is conducted into the fins through the ceramic base. In the present study the ceramic base is assumed to be subjected to a uniform heat flux at the bottom. The computational method incorporates a special block-correction procedure to enable iterative solution of conjugate heat transfer in the presence of large differences in thermal conductivities of the air and the fin material. The results of computations reproduce the flow pattern in the fin array that is observed experimentally. The part of the ceramic base directly below the nozzle is well cooled with the temperatures gradually increasing from the center towards the corner. The predicted pressure drop and most of the local temperatures at the base and the tip of the fins agree well with the experimental observations. This study illustrates the utility of computational flow analysis in the analysis and design of electronic cooling techniques.
publisherThe American Society of Mechanical Engineers (ASME)
titleNumerical Prediction of Flow and Heat Transfer in an Impingement Heat Sink
typeJournal Paper
journal volume119
journal issue1
journal titleJournal of Electronic Packaging
identifier doi10.1115/1.2792201
journal fristpage58
journal lastpage63
identifier eissn1043-7398
keywordsFlow (Dynamics)
keywordsHeat transfer AND Heat sinks
treeJournal of Electronic Packaging:;1997:;volume( 119 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record