YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Localized Modes in Periodic Systems With Nonlinear Disorders

    Source: Journal of Applied Mechanics:;1997:;volume( 064 ):;issue: 004::page 940
    Author:
    C. W. Cai
    ,
    H. C. Chan
    ,
    Y. K. Cheung
    DOI: 10.1115/1.2789003
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The localized modes of periodic systems with infinite degrees-of-freedom and having one or two nonlinear disorders are examined by using the Lindstedt-Poincare (L-P) method. The set of nonlinear algebraic equations with infinite number of variables is derived and solved exactly by the U-transformation technique. It is shown that the localized modes exist for any amount of the ratio between the linear coupling stiffness kc and the coefficient γ of the nonlinear disordered term, and the nonsymmetric localized mode in the periodic system with two nonlinear disorders occurs as the ratio kc /γ, decreasing to a critical value depending on the maximum amplitude.
    keyword(s): Degrees of freedom , Equations AND Stiffness ,
    • Download: (448.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Localized Modes in Periodic Systems With Nonlinear Disorders

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/118120
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorC. W. Cai
    contributor authorH. C. Chan
    contributor authorY. K. Cheung
    date accessioned2017-05-08T23:52:27Z
    date available2017-05-08T23:52:27Z
    date copyrightDecember, 1997
    date issued1997
    identifier issn0021-8936
    identifier otherJAMCAV-26428#940_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/118120
    description abstractThe localized modes of periodic systems with infinite degrees-of-freedom and having one or two nonlinear disorders are examined by using the Lindstedt-Poincare (L-P) method. The set of nonlinear algebraic equations with infinite number of variables is derived and solved exactly by the U-transformation technique. It is shown that the localized modes exist for any amount of the ratio between the linear coupling stiffness kc and the coefficient γ of the nonlinear disordered term, and the nonsymmetric localized mode in the periodic system with two nonlinear disorders occurs as the ratio kc /γ, decreasing to a critical value depending on the maximum amplitude.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleLocalized Modes in Periodic Systems With Nonlinear Disorders
    typeJournal Paper
    journal volume64
    journal issue4
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.2789003
    journal fristpage940
    journal lastpage945
    identifier eissn1528-9036
    keywordsDegrees of freedom
    keywordsEquations AND Stiffness
    treeJournal of Applied Mechanics:;1997:;volume( 064 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian