| contributor author | Jiun-Shyan Chen | |
| contributor author | Cheng-Tang Wu | |
| contributor author | Chunhui Pan | |
| date accessioned | 2017-05-08T23:49:01Z | |
| date available | 2017-05-08T23:49:01Z | |
| date copyright | December, 1996 | |
| date issued | 1996 | |
| identifier issn | 0021-8936 | |
| identifier other | JAMCAV-26402#869_1.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/116351 | |
| description abstract | In the first part of this paper a pressure projection method was presented for the nonlinear analysis of structures made of nearly incompressible hyperelastic materials. The main focus of the second part of the paper is to demonstrate the performance of the present method and to address some of the issues related to the analysis of engineering elastomers including the proper selection of strain energy density functions. The numerical procedures and the implementation to nonlinear finite element programs are presented. Mooney-Rivlin, Cubic, and Modified Cubic strain energy density functions are used in the numerical examples. Several classical finite elasticity problems as well as some practical engineering elastomer problems are analyzed. The need to account for the slight compressibility of rubber (finite bulk modulus) in the finite element formulation is demonstrated in the study of apparent Young’s modulus of bonded thin rubber units. The combined shear-bending deformation that commonly exists in rubber mounting systems is also analyzed and discussed. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | A Pressure Projection Method for Nearly Incompressible Rubber Hyperelasticity, Part II: Applications | |
| type | Journal Paper | |
| journal volume | 63 | |
| journal issue | 4 | |
| journal title | Journal of Applied Mechanics | |
| identifier doi | 10.1115/1.2787241 | |
| journal fristpage | 869 | |
| journal lastpage | 876 | |
| identifier eissn | 1528-9036 | |
| keywords | Pressure | |
| keywords | Rubber | |
| keywords | Elastomers | |
| keywords | Finite element analysis | |
| keywords | Functions | |
| keywords | Elasticity | |
| keywords | Density | |
| keywords | Deformation | |
| keywords | Compressibility AND Shear (Mechanics) | |
| tree | Journal of Applied Mechanics:;1996:;volume( 063 ):;issue: 004 | |
| contenttype | Fulltext | |