YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Energy Impact of Air Leakage Through Insulated Walls

    Source: Journal of Solar Energy Engineering:;1995:;volume( 117 ):;issue: 003::page 167
    Author:
    S. Bhattacharyya
    ,
    D. E. Claridge
    DOI: 10.1115/1.2847761
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Infiltration is customarily assumed to increase the heating and cooling load of a building by an amount equal to the mass flow rate of the infiltration times the enthalpy difference between the inside and outside air—with the latent portion of the enthalpy difference sometimes neglected. An experimental and analytical investigation has been conducted on the actual energy impact of air leakage on a well-characterized insulated stud-cavity wall specimen. Calorimetric measurements conducted on the specimen with measured amounts of air leakage introduced under a variety of controlled conditions and configurations verify earlier test cell measurements showing that infiltration heat exchange can lead to a much smaller change in the energy load due to infiltration than is customarily calculated and show the dependence of infiltration heat exchange on flow rate and path length. An analytical model based on fundamental heat and mass transfer principles has been developed and the predicted values of Infiltration Heat Exchange Effectiveness, ε, as a function of air flow rates and effective path length for five stud-cavity wall specimen test configurations were consistent with the experimental results. Significant experimental results include: (i) ε values in the 0.16–0.7 range in the stud-cavity and (ii) ε values of 0.16 to 0.34 for air exiting the stud-cavity directly across from the entry. These results indicate that significant heat recovery is probable for most leakage occurring through insulated stud cavities.
    keyword(s): Leakage ,
    • Download: (719.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Energy Impact of Air Leakage Through Insulated Walls

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/115904
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorS. Bhattacharyya
    contributor authorD. E. Claridge
    date accessioned2017-05-08T23:48:13Z
    date available2017-05-08T23:48:13Z
    date copyrightAugust, 1995
    date issued1995
    identifier issn0199-6231
    identifier otherJSEEDO-28257#167_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/115904
    description abstractInfiltration is customarily assumed to increase the heating and cooling load of a building by an amount equal to the mass flow rate of the infiltration times the enthalpy difference between the inside and outside air—with the latent portion of the enthalpy difference sometimes neglected. An experimental and analytical investigation has been conducted on the actual energy impact of air leakage on a well-characterized insulated stud-cavity wall specimen. Calorimetric measurements conducted on the specimen with measured amounts of air leakage introduced under a variety of controlled conditions and configurations verify earlier test cell measurements showing that infiltration heat exchange can lead to a much smaller change in the energy load due to infiltration than is customarily calculated and show the dependence of infiltration heat exchange on flow rate and path length. An analytical model based on fundamental heat and mass transfer principles has been developed and the predicted values of Infiltration Heat Exchange Effectiveness, ε, as a function of air flow rates and effective path length for five stud-cavity wall specimen test configurations were consistent with the experimental results. Significant experimental results include: (i) ε values in the 0.16–0.7 range in the stud-cavity and (ii) ε values of 0.16 to 0.34 for air exiting the stud-cavity directly across from the entry. These results indicate that significant heat recovery is probable for most leakage occurring through insulated stud cavities.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Energy Impact of Air Leakage Through Insulated Walls
    typeJournal Paper
    journal volume117
    journal issue3
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.2847761
    journal fristpage167
    journal lastpage172
    identifier eissn1528-8986
    keywordsLeakage
    treeJournal of Solar Energy Engineering:;1995:;volume( 117 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian