YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Building Energy Use Prediction and System Identification Using Recurrent Neural Networks

    Source: Journal of Solar Energy Engineering:;1995:;volume( 117 ):;issue: 003::page 161
    Author:
    J. F. Kreider
    ,
    D. E. Claridge
    ,
    P. Curtiss
    ,
    J. S. Haberl
    ,
    M. Krarti
    ,
    R. Dodier
    DOI: 10.1115/1.2847757
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Following several successful applications of feedforward neural networks (NNs) to the building energy prediction problem (Wang and Kreider, 1992; JCEM, 1992, 1993; Curtiss et al., 1993, 1994; Anstett and Kreider, 1993; Kreider and Haberl, 1994) a more difficult problem has been addressed recently: namely, the prediction of building energy consumption well into the future without knowledge of immediately past energy consumption. This paper will report results on a recent study of six months of hourly data recorded at the Zachry Engineering Center (ZEC) in College Station, TX. Also reported are results on finding the R and C values for buildings from networks trained on building data.
    keyword(s): Artificial neural networks , Energy consumption , Feedforward control , Networks AND Structures ,
    • Download: (797.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Building Energy Use Prediction and System Identification Using Recurrent Neural Networks

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/115903
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorJ. F. Kreider
    contributor authorD. E. Claridge
    contributor authorP. Curtiss
    contributor authorJ. S. Haberl
    contributor authorM. Krarti
    contributor authorR. Dodier
    date accessioned2017-05-08T23:48:13Z
    date available2017-05-08T23:48:13Z
    date copyrightAugust, 1995
    date issued1995
    identifier issn0199-6231
    identifier otherJSEEDO-28257#161_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/115903
    description abstractFollowing several successful applications of feedforward neural networks (NNs) to the building energy prediction problem (Wang and Kreider, 1992; JCEM, 1992, 1993; Curtiss et al., 1993, 1994; Anstett and Kreider, 1993; Kreider and Haberl, 1994) a more difficult problem has been addressed recently: namely, the prediction of building energy consumption well into the future without knowledge of immediately past energy consumption. This paper will report results on a recent study of six months of hourly data recorded at the Zachry Engineering Center (ZEC) in College Station, TX. Also reported are results on finding the R and C values for buildings from networks trained on building data.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleBuilding Energy Use Prediction and System Identification Using Recurrent Neural Networks
    typeJournal Paper
    journal volume117
    journal issue3
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.2847757
    journal fristpage161
    journal lastpage166
    identifier eissn1528-8986
    keywordsArtificial neural networks
    keywordsEnergy consumption
    keywordsFeedforward control
    keywordsNetworks AND Structures
    treeJournal of Solar Energy Engineering:;1995:;volume( 117 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian