YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Importance of the Nitrous Oxide Pathway to NOx in Lean-Premixed Combustion

    Source: Journal of Engineering for Gas Turbines and Power:;1995:;volume( 117 ):;issue: 001::page 100
    Author:
    D. G. Nicol
    ,
    R. C. Steele
    ,
    N. M. Marinov
    ,
    P. C. Malte
    DOI: 10.1115/1.2812756
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This study addresses the importance of the different chemical pathways responsible for NOx formation in lean-premixed combustion, and especially the role of the nitrous oxide pathway relative to the traditional Zeldovich pathway. NOx formation is modeled and computed over a range of operating conditions for the lean-premixed primary zone of gas turbine engine combustors. The primary zone, of uniform fuel-air ratio, is modeled as a micromixed well-stirred reactor, representing the flame zone, followed by a series of plug flow reactors, representing the postflame zone. The fuel is methane. The fuel–air equivalence ratio is varied from 0.5 to 0.7.The chemical reactor model permits study of the three pathways by which NOx forms, which are the Zeldovich, nitrous oxide, and prompt pathways. Modeling is also performed for the well-stirred reactor alone. Three recently published, complete chemical kinetic mechanisms for the C1–C2 hydrocarbon oxidation and the NOx formation are applied and compared. Verification of the model is based on the comparison of its NOx output to experimental results published for atmospheric pressure jet-stirred reactors and for a 10 atm. porous-plate burner. Good agreement between the modeled results and the measurements is obtained for most of the jet-stirred reactor operating range. For the porous-plate burner, the model shows agreement to the NOx measurements within a factor of two, with close agreement occurring at the leanest and coolest cases examined. For lean-premixed combustion at gas turbine engine conditions, the nitrous oxide pathway is found to be important, though the Zeldovich pathway cannot be neglected. The prompt pathway, however, contributes small-to-negligible NOx . Whenever the NOx emission is in the 15 to 30 ppmυ (15 percent O2 , dry) range, the nitrous oxide pathway is predicted to contribute 40 to 45 percent of the NOx for high-pressure engines (30 atm), and 20 to 35 percent of the NOx for intermediate pressure engines (10 atm). For conditions producing NOx of less than 10 ppmυ (15 percent O2 , dry), the nitrous oxide contribution increases steeply and approaches 100 percent. For lean-premixed combustion in the atmospheric pressure jet-stirred reactors, different behavior is found. All three pathways contribute; none can be dismissed. No universal behavior is found for the pressure dependence of the NOx . It does appear, however, that lean-premixed combustors operated in the vicinity of 10 atm have a relatively weak pressure dependence, whereas combustors operated in the vicinity of 30 atm have an approximately square root pressure dependence of the NOx .
    keyword(s): Combustion , Nitrogen oxides , Pressure , Combustion chambers , Fuels , Engines , Gas turbines , Atmospheric pressure , Measurement , Flow (Dynamics) , Modeling , Flames , Methane , oxidation , High pressure (Physics) , Emissions AND Mechanisms ,
    • Download: (1.192Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Importance of the Nitrous Oxide Pathway to NOx in Lean-Premixed Combustion

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/115343
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorD. G. Nicol
    contributor authorR. C. Steele
    contributor authorN. M. Marinov
    contributor authorP. C. Malte
    date accessioned2017-05-08T23:47:16Z
    date available2017-05-08T23:47:16Z
    date copyrightJanuary, 1995
    date issued1995
    identifier issn1528-8919
    identifier otherJETPEZ-26735#100_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/115343
    description abstractThis study addresses the importance of the different chemical pathways responsible for NOx formation in lean-premixed combustion, and especially the role of the nitrous oxide pathway relative to the traditional Zeldovich pathway. NOx formation is modeled and computed over a range of operating conditions for the lean-premixed primary zone of gas turbine engine combustors. The primary zone, of uniform fuel-air ratio, is modeled as a micromixed well-stirred reactor, representing the flame zone, followed by a series of plug flow reactors, representing the postflame zone. The fuel is methane. The fuel–air equivalence ratio is varied from 0.5 to 0.7.The chemical reactor model permits study of the three pathways by which NOx forms, which are the Zeldovich, nitrous oxide, and prompt pathways. Modeling is also performed for the well-stirred reactor alone. Three recently published, complete chemical kinetic mechanisms for the C1–C2 hydrocarbon oxidation and the NOx formation are applied and compared. Verification of the model is based on the comparison of its NOx output to experimental results published for atmospheric pressure jet-stirred reactors and for a 10 atm. porous-plate burner. Good agreement between the modeled results and the measurements is obtained for most of the jet-stirred reactor operating range. For the porous-plate burner, the model shows agreement to the NOx measurements within a factor of two, with close agreement occurring at the leanest and coolest cases examined. For lean-premixed combustion at gas turbine engine conditions, the nitrous oxide pathway is found to be important, though the Zeldovich pathway cannot be neglected. The prompt pathway, however, contributes small-to-negligible NOx . Whenever the NOx emission is in the 15 to 30 ppmυ (15 percent O2 , dry) range, the nitrous oxide pathway is predicted to contribute 40 to 45 percent of the NOx for high-pressure engines (30 atm), and 20 to 35 percent of the NOx for intermediate pressure engines (10 atm). For conditions producing NOx of less than 10 ppmυ (15 percent O2 , dry), the nitrous oxide contribution increases steeply and approaches 100 percent. For lean-premixed combustion in the atmospheric pressure jet-stirred reactors, different behavior is found. All three pathways contribute; none can be dismissed. No universal behavior is found for the pressure dependence of the NOx . It does appear, however, that lean-premixed combustors operated in the vicinity of 10 atm have a relatively weak pressure dependence, whereas combustors operated in the vicinity of 30 atm have an approximately square root pressure dependence of the NOx .
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Importance of the Nitrous Oxide Pathway to NOx in Lean-Premixed Combustion
    typeJournal Paper
    journal volume117
    journal issue1
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.2812756
    journal fristpage100
    journal lastpage111
    identifier eissn0742-4795
    keywordsCombustion
    keywordsNitrogen oxides
    keywordsPressure
    keywordsCombustion chambers
    keywordsFuels
    keywordsEngines
    keywordsGas turbines
    keywordsAtmospheric pressure
    keywordsMeasurement
    keywordsFlow (Dynamics)
    keywordsModeling
    keywordsFlames
    keywordsMethane
    keywordsoxidation
    keywordsHigh pressure (Physics)
    keywordsEmissions AND Mechanisms
    treeJournal of Engineering for Gas Turbines and Power:;1995:;volume( 117 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian