YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Poincare Linear Interpolated Cell Mapping: Method for Global Analysis of Oscillating Systems

    Source: Journal of Applied Mechanics:;1995:;volume( 062 ):;issue: 002::page 489
    Author:
    J. Levitas
    ,
    T. Weller
    DOI: 10.1115/1.2895956
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A method for global analysis of nonlinear dynamical oscillating systems was developed. The method is based on the idea of introducing a Poincare section into a multidimensional state space of the dynamical system and combine it with an interpolation procedure within the cells which constitute the discretized problem domain of interest. The proposed method was applied to study the global behavior of two nonlinear coupled van der Pol oscillators. Significant saving in calculation time, in comparison with both direct numerical integration and Poincare-like simple cell mapping, is demonstrated.
    keyword(s): Dynamic systems AND Interpolation ,
    • Download: (750.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Poincare Linear Interpolated Cell Mapping: Method for Global Analysis of Oscillating Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/114887
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorJ. Levitas
    contributor authorT. Weller
    date accessioned2017-05-08T23:46:28Z
    date available2017-05-08T23:46:28Z
    date copyrightJune, 1995
    date issued1995
    identifier issn0021-8936
    identifier otherJAMCAV-26363#489_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/114887
    description abstractA method for global analysis of nonlinear dynamical oscillating systems was developed. The method is based on the idea of introducing a Poincare section into a multidimensional state space of the dynamical system and combine it with an interpolation procedure within the cells which constitute the discretized problem domain of interest. The proposed method was applied to study the global behavior of two nonlinear coupled van der Pol oscillators. Significant saving in calculation time, in comparison with both direct numerical integration and Poincare-like simple cell mapping, is demonstrated.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePoincare Linear Interpolated Cell Mapping: Method for Global Analysis of Oscillating Systems
    typeJournal Paper
    journal volume62
    journal issue2
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.2895956
    journal fristpage489
    journal lastpage495
    identifier eissn1528-9036
    keywordsDynamic systems AND Interpolation
    treeJournal of Applied Mechanics:;1995:;volume( 062 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian